Supplementary effect of egg white protein on the utilization of soy protein isolate in growing rats

1991 ◽  
Vol 11 (10) ◽  
pp. 1147-1154
Author(s):  
Masahiro Mori ◽  
Tomoo Korin ◽  
Ming-Fu Wang ◽  
Liu Asato ◽  
Shigeru Yamamoto ◽  
...  
Foods ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 589 ◽  
Author(s):  
Adetiya Rachman ◽  
Margaret A. Brennan ◽  
James Morton ◽  
Charles S. Brennan

The effects of egg white protein and soy protein isolate addition on the nutritional and digestibility of gluten-free pasta based on banana flour were studied. The level of protein additions (soy protein or egg white protein) were 0, 5, 10 and 15% of banana flour (w/w). Pasta made from 100% durum wheat semolina was used as a control. Soy protein isolate inclusion into banana pasta increased total phenolic content (TPC) and antioxidant capacities, while egg white protein decreased the TPC and antioxidant capacities with the increasing level of addition. Starch digestibility was affected by the type of protein addition. Egg white protein lowered starch digestibility compared to soy protein isolate. Protein inclusion in banana pasta also altered protein digestibility, amino acid profiles and protein digestibility-corrected amino acid score (PDCAAS). Soy protein isolate increased protein digestibility of gluten-free pasta compared to egg white protein. Protein enrichment gave better amino acid profiles of banana pasta compared to semolina pasta with egg white protein and performed a better PDCAAS compared to soy protein isolate. These results showed that soy protein isolate and egg white protein addition enhanced nutritional qualities and digestibility properties of gluten-free banana pasta.


1987 ◽  
Vol 117 (2) ◽  
pp. 247-252 ◽  
Author(s):  
B. Diane Richter ◽  
Barbara Olds Schneeman

Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1807
Author(s):  
Estefanía Álvarez-Castillo ◽  
José Manuel Aguilar ◽  
Carlos Bengoechea ◽  
María Luisa López-Castejón ◽  
Antonio Guerrero

Composite materials based on proteins and carbohydrates normally offer improved water solubility, biodegradability, and biocompatibility, which make them attractive for a wide range of applications. Soy protein isolate (SPI) has shown superabsorbent properties that are useful in fields such as agriculture. Alginate salts (ALG) are linear anionic polysaccharides obtained at a low cost from brown algae, displaying a good enough biocompatibility to be considered for medical applications. As alginates are quite hydrophilic, the exchange of ions from guluronic acid present in its molecular structure with divalent cations, particularly Ca2+, may induce its gelation, which would inhibit its solubilization in water. Both biopolymers SPI and ALG were used to produce composites through injection moulding using glycerol (Gly) as a plasticizer. Different biopolymer/plasticizer ratios were employed, and the SPI/ALG ratio within the biopolymer fraction was also varied. Furthermore, composites were immersed in different CaCl2 solutions to inhibit the amount of soluble matter loss and to enhance the mechanical properties of the resulting porous matrices. The main goal of the present work was the development and characterization of green porous matrices with inhibited solubility thanks to the gelation of alginate.


Sign in / Sign up

Export Citation Format

Share Document