Effect of estrogen deficiency in the male: the ArKO mouse model

2002 ◽  
Vol 193 (1-2) ◽  
pp. 7-12 ◽  
Author(s):  
Y Murata ◽  
K.M Robertson ◽  
M.E.E Jones ◽  
E.R Simpson
2021 ◽  
Vol 13 ◽  
Author(s):  
Wei Zhao ◽  
Yue Hou ◽  
Xinxin Song ◽  
Lei Wang ◽  
Fangfang Zhang ◽  
...  

Background: Estrogen deficiency contributes to the development of Alzheimer’s disease (AD) in menopausal women. In the current study, we examined the impact of estrogen deficiency on mitochondrial function and cognition using a postmenopausal mouse model.Methods: Bilateral ovariectomy was conducted in adult females C57BL/6J. Cognitive function was examined using the Morris water maze (MWM) test at 2 weeks, 1, 2, and 3 months after ovariectomy. Neurodegeneration was assessed using an immunofluorescence assay of microtubule-associated protein 2 (MAP2) in the hippocampus and immunoblotting against postsynaptic density-95 (PSD95). Mitochondrial function in the hippocampus was assessed using immunoblotting for NDUFB8, SDHB, UQCRC2, MTCO1, and ATP5A1. Mitochondrial biogenesis was examined using immunoblotting for PGC-1α, NRF1, and mtTFA. Mitochondrion fission was assessed with immunoblotting for Drp1, whereas mitochondrion fusion was analyzed with immunoblotting for OPA1 and Mfn2. Mitophagy was examined with immunoblotting for PINK1 and LC3B. Mice receiving sham surgery were used as controls.Results: Ovariectomy resulted in significant learning and memory deficits in the MWM test at 3 months, but not at any earlier time points. At 2 weeks after ovariectomy, levels of Drp1 phosphorylated at Ser637 decreased in the hippocampus. At 1 month after ovariectomy, hippocampal levels of NDUFB8, SDHB, PGC-1α, mtTFA, OPA1, and Mfn2 were significantly reduced. At 2 months after ovariectomy, hippocampal levels of MAP2, PSD95, MTCO1, NRF1, and Pink1 were also reduced. At 3 months, levels of LC3B-II were reduced.Conclusions: The cognitive decline associated with estrogen deficiency is preceded by mitochondrial dysfunction, abnormal mitochondrial biogenesis, irregular mitochondrial dynamics, and decreased mitophagy. Thus, mitochondrial damage may contribute to cognitive impairment associated with estrogen deficiency.


2019 ◽  
Vol 106 (2) ◽  
pp. 180-193
Author(s):  
Lindsay K. Sullivan ◽  
Eric W. Livingston ◽  
Anthony G. Lau ◽  
Sheila Rao-Dayton ◽  
Ted A. Bateman

2011 ◽  
Vol 2011 ◽  
pp. 1-12 ◽  
Author(s):  
Annik Prat ◽  
Maik Behrendt ◽  
Edwige Marcinkiewicz ◽  
Sebastien Boridy ◽  
Ram M. Sairam ◽  
...  

The role of estrogens in Alzheimer's disease (AD) involving β-amyloid (Aβ) generation and plaque formation was mostly tested in ovariectomized mice with or without APP mutations. The aim of the present study was to explore the abnormalities of neural cells in a novel mouse model of AD with chronic estrogen deficiency. These chimeric mice exhibit a total FSH-R knockout (FORKO) and carry two transgenes, one expressing the β-amyloid precursor protein (APPsw, Swedish mutation) and the other expressing presenilin-1 lacking exon 9 (PS1Δ9). The most prominent changes in the cerebral cortex and hippocampus of these hypoestrogenic mice were marked hypertrophy of both cortical neurons and astrocytes and an increased number of activated microglia. There were no significant differences in the number of Aβ plaques although they appeared less compacted and larger than those in APPsw/PS1Δ9 control mice. Similar glia abnormalities were obtained in wild-type primary cortical neural cultures treated with letrozole, an aromatase inhibitor. The concordance of results from APPsw/PS1Δ9 mice with or without FSH-R deletion and those with letrozole treatment in vitro (with and without Aβ treatment) of primary cortical/hippocampal cultures suggests the usefulness of these models to explore molecular mechanisms involved in microglia and astrocyte activation in hypoestrogenic states in the central nervous system.


Author(s):  
H. D. Geissinge ◽  
L.D. Rhodes

A recently discovered mouse model (‘mdx’) for muscular dystrophy in man may be of considerable interest, since the disease in ‘mdx’ mice is inherited by the same mode of inheritance (X-linked) as the human Duchenne (DMD) muscular dystrophy. Unlike DMD, which results in a situation in which the continual muscle destruction cannot keep up with abortive regenerative attempts of the musculature, and the sufferers of the disease die early, the disease in ‘mdx’ mice appears to be transient, and the mice do not die as a result of it. In fact, it has been reported that the severely damaged Tibialis anterior (TA) muscles of ‘mdx’ mice seem to display exceptionally good regenerative powers at 4-6 weeks, so much so, that these muscles are able to regenerate spontaneously up to their previous levels of physiological activity.


1998 ◽  
Vol 13 (11-s4) ◽  
pp. S178-S184 ◽  
Author(s):  
PETER KONTUREK ◽  
TOMASZ BRZOZOWSKI ◽  
STANISLAW KONTUREK ◽  
ELZBIETA KARCZEWSKA ◽  
ROBERT PAJDO ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document