Inhalation toxicity assessment of an aerosolized sunscreen product with an in vitro pulmonary model

2021 ◽  
Vol 350 ◽  
pp. S217
Author(s):  
B. Bui ◽  
M.-P. Gomez-Berrada ◽  
P.-J. Ferret
2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Amara L. Holder ◽  
Linsey C. Marr

Silver nanoparticles are one of the most prevalent nanomaterials in consumer products. Some of these products are likely to be aerosolized, making silver nanoparticles a high priority for inhalation toxicity assessment. To study the inhalation toxicity of silver nanoparticles, we have exposed cultured lung cells to them at the air-liquid interface. Cells were exposed to suspensions of silver or nickel oxide (positive control) nanoparticles at concentrations of 2.6, 6.6, and 13.2 μg cm−2(volume concentrations of 10, 25, and 50 μg ml−1) and to 0.7 μg cm−2silver or 2.1 μg cm−2nickel oxide aerosol at the air-liquid interface. Unlike a number ofin vitrostudies employing suspensions of silver nanoparticles, which have shown strong toxic effects, both suspensions and aerosolized nanoparticles caused negligible cytotoxicity and only a mild inflammatory response, in agreement with animal exposures. Additionally, we have developed a novel method using a differential mobility analyzer to select aerosolized nanoparticles of a single diameter to assess the size-dependent toxicity of silver nanoparticles.


Author(s):  
Jördis Klose ◽  
Melanie Pahl ◽  
Kristina Bartmann ◽  
Farina Bendt ◽  
Jonathan Blum ◽  
...  

AbstractDue to their neurodevelopmental toxicity, flame retardants (FRs) like polybrominated diphenyl ethers are banned from the market and replaced by alternative FRs, like organophosphorus FRs, that have mostly unknown toxicological profiles. To study their neurodevelopmental toxicity, we evaluated the hazard of several FRs including phased-out polybrominated FRs and organophosphorus FRs: 2,2′,4,4′-tetrabromodiphenylether (BDE-47), 2,2′,4,4′,5-pentabromodiphenylether (BDE-99), tetrabromobisphenol A, triphenyl phosphate, tris(2-butoxyethyl) phosphate and its metabolite bis-(2-butoxyethyl) phosphate, isodecyl diphenyl phosphate, triphenyl isopropylated phosphate, tricresyl phosphate, tris(1,3-dichloro-2-propyl) phosphate, tert-butylphenyl diphenyl phosphate, 2-ethylhexyl diphenyl phosphate, tris(1-chloroisopropyl) phosphate, and tris(2-chloroethyl) phosphate. Therefore, we used a human cell–based developmental neurotoxicity (DNT) in vitro battery covering a large variety of neurodevelopmental endpoints. Potency according to the respective most sensitive benchmark concentration (BMC) across the battery ranked from <1 μM (5 FRs), 1<10 μM (7 FRs) to the >10 μM range (3 FRs). Evaluation of the data with the ToxPi tool revealed a distinct ranking (a) than with the BMC and (b) compared to the ToxCast data, suggesting that DNT hazard of these FRs is not well predicted by ToxCast assays. Extrapolating the DNT in vitro battery BMCs to human FR exposure via breast milk suggests low risk for individual compounds. However, it raises a potential concern for real-life mixture exposure, especially when different compounds converge through diverse modes-of-action on common endpoints, like oligodendrocyte differentiation in this study. This case study using FRs suggests that human cell–based DNT in vitro battery is a promising approach for neurodevelopmental hazard assessment and compound prioritization in risk assessment. Graphical abstract


2013 ◽  
Vol 27 (3) ◽  
pp. 1049-1056 ◽  
Author(s):  
Mélanie Pailleux ◽  
Delphine Boudard ◽  
Jérémie Pourchez ◽  
Valérie Forest ◽  
Philippe Grosseau ◽  
...  

Neuroforum ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Julia Tigges ◽  
Tamara Schikowski ◽  
Ellen Fritsche

Abstract Exposure to environmental pollutants like chemicals or air pollution is major health concern for the human population. Especially the nervous system is a sensitive target for environmental toxins with exposures leading to life stage-dependent neurotoxicity. Developmental and adult neurotoxicity are characterized by specific adverse outcomes ranging from neurodevelopmental disorders to neurodegenerative diseases like Alzheimer’s and Parkinson’s disease. The risk assessment process for human health protection is currently undergoing a paradigm change toward new approach methods that allow mechanism-based toxicity assessment. As a flagship project, an in vitro battery of test methods for developmental neurotoxicity evaluation is currently supported by the Organization for Economic Co-operation and Development (OECD). A plethora of stem cell-based methods including brain spheres and organoids are currently further developed to achieve time- and cost-saving tools for linking MoA-based hazards to adverse health effects observed in humans.


2018 ◽  
Vol 9 ◽  
Author(s):  
S. Sai Latha ◽  
S. Naveen ◽  
C. K. Pradeep ◽  
C. Sivaraj ◽  
M. G. Dinesh ◽  
...  

2005 ◽  
Vol 2 (1) ◽  
pp. 9-14 ◽  
Author(s):  
Y. Raji . ◽  
F.O. Awobajo . ◽  
Olufadekemi . ◽  
T. Kunle-Alabi . ◽  
M.A. Gbadegesin . ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document