The Inclusion of a Surface Mixed Layer in a Large-Scale Circulation Model

Author(s):  
Eric B. Kraus ◽  
Rainer Bleck ◽  
Howard P. Hanson
2007 ◽  
Vol 88 (8) ◽  
pp. 1215-1228 ◽  
Author(s):  
William I. Gustafson ◽  
L. Ruby Leung

Assessing future changes in air quality using downscaled climate scenarios is a relatively new application of the dynamical downscaling technique. This article compares and evaluates two downscaled simulations for the United States made using the fifth-generation Pennsylvania State University–NCAR Mesoscale Model with the goal of understanding how errors in the downscaled climate simulations may introduce uncertainty in air quality assessment. The two downscaled simulations were driven by boundary conditions from the NCEP–NCAR global reanalysis and a global climate simulation generated by the Goddard Institute for Space Studies global circulation model, respectively. Comparisons of the model runs are made against the boundary layer and circulation characteristics of the North American Regional Reanalysis, and also against observed precipitation. The relative dependence of different simulated quantities on regional forcing, model parameterizations, and large-scale circulation provides a framework to understand similarities and differences between model simulations. Results show significant improvements in the downscaled diurnal wind patterns, in response to the complex orography, that are important for air quality assessment. Evaluation of downscaled boundary layer depth and winds, precipitation, and large-scale circulation shows larger biases related to model physics and biases in the GCM large-scale conditions. Based on the comparisons, recommendations are made to improve the utility of downscaled scenarios for air quality assessment.


2007 ◽  
Vol 20 (5) ◽  
pp. 908-925 ◽  
Author(s):  
Eric D. Maloney ◽  
Adam H. Sobel

Abstract Idealized experiments are conducted using a GCM coupled to a 20-m slab ocean model to examine the short-term response to an initial localized positive equatorial SST anomaly, or “hot spot.” A hot spot is imposed upon an aquaplanet with globally uniform 28°C SST, insolation, and trace gas concentrations designed to mimic tropical warm pool conditions. No boundary condition or external parameter other than the Coriolis parameter varies with latitude. A 15-member ensemble is initiated using random atmospheric initial conditions. A 2°C equatorial warm anomaly is switched on, along with ocean coupling (day 0). Enhanced deep convection rapidly develops near the hot spot, forcing an anomalous large-scale circulation that resembles the linear response of a dry atmosphere to a localized heating, as in the Gill model. Enhanced convection, the anomalous large-scale circulation, and enhanced wind speed peak in amplitude at about day 15. Enhanced latent heat fluxes driven primarily by an increase in vector mean wind damp the anomalous heat content of the ocean near the hot spot before day 20. Between day 20 and day 50, suppressed latent heat fluxes due to suppressed synoptic eddy variance cause a warming of the remote Tropics in regions of anomalous low-level easterly flow. This wind-driven evaporative atmosphere–ocean exchange results in a 60–70-day oscillation in tropical mean oceanic heat content, accompanied by a compensating out-of-phase oscillation in vertically integrated atmospheric moist static energy. Beyond day 70 of the simulation, positive SST anomalies are found across much of the tropical belt. These slowly decay toward the 28°C background state.


2009 ◽  
Vol 2 (2) ◽  
pp. 197-212 ◽  
Author(s):  
O. H. Otterå ◽  
M. Bentsen ◽  
I. Bethke ◽  
N. G. Kvamstø

Abstract. The Bergen Climate Model (BCM) is a fully-coupled atmosphere-ocean-sea-ice model that provides state-of-the-art computer simulations of the Earth's past, present, and future climate. Here, a pre-industrial multi-century simulation with an updated version of BCM is described and compared to observational data. The model is run without any form of flux adjustments and is stable for several centuries. The simulated climate reproduces the general large-scale circulation in the atmosphere reasonably well, except for a positive bias in the high latitude sea level pressure distribution. Also, by introducing an updated turbulence scheme in the atmosphere model a persistent cold bias has been eliminated. For the ocean part, the model drifts in sea surface temperatures and salinities are considerably reduced compared to earlier versions of BCM. Improved conservation properties in the ocean model have contributed to this. Furthermore, by choosing a reference pressure at 2000 m and including thermobaric effects in the ocean model, a more realistic meridional overturning circulation is simulated in the Atlantic Ocean. The simulated sea-ice extent in the Northern Hemisphere is in general agreement with observational data except for summer where the extent is somewhat underestimated. In the Southern Hemisphere, large negative biases are found in the simulated sea-ice extent. This is partly related to problems with the mixed layer parametrization, causing the mixed layer in the Southern Ocean to be too deep, which in turn makes it hard to maintain a realistic sea-ice cover here. However, despite some problematic issues, the pre-industrial control simulation presented here should still be appropriate for climate change studies requiring multi-century simulations.


2021 ◽  
Author(s):  
Helen L. Johnson ◽  
Graeme MacGilchrist ◽  
David P. Marshall ◽  
Camille Lique ◽  
Matthew Thomas ◽  
...  

<p>A substantial fraction of the deep ocean is ventilated in the high latitude North Atlantic. As a result, the region plays a crucial role in transient climate change through the uptake of carbon dioxide and heat. We investigate the nature of ventilation in the high latitude North Atlantic in an eddy-permitting numerical ocean circulation model using a set of comprehensive Lagrangian trajectory experiments. Backwards-in-time trajectories from a model-defined ‘North Atlantic Deep Water’ (NADW) reveal the times and locations of subduction from the surface mixed layer at high temporal and spatial resolution. The major fraction (∼60%) of NADW ventilation results from subduction directly into the Labrador Sea boundary current, with a smaller fraction (∼25%) arising from open ocean deep convection in the Labrador Sea. There is a notable absence of ventilation arising from subduction in the Greenland–Iceland–Norwegian Seas, due to the re-entrainment of those waters as they move southward. Temporal variability in ventilation arises both from changes in subduction — driven by large-scale atmospheric forcing — and from year-to-year changes in the subsurface retention of newly subducted water, the result of an inter-annual equivalent of Stommel’s mixed layer demon. This interannual demon operates most effectively in the open ocean where newly subducted water is slow to escape its region of subduction. Thus, while subduction in the boundary current dominates NADW ventilation, processes in the open ocean set the variability, mediating the translation of inter-annual variations in atmospheric forcing to the ocean interior.</p>


2017 ◽  
Vol 30 (22) ◽  
pp. 9147-9166 ◽  
Author(s):  
Max Popp ◽  
Levi G. Silvers

A major bias in tropical precipitation over the Pacific in climate simulations stems from the models’ tendency to produce two strong distinct intertropical convergence zones (ITCZs) too often. Several mechanisms have been proposed that may contribute to the emergence of two ITCZs, but current theories cannot fully explain the bias. This problem is tackled by investigating how the interaction between atmospheric cloud-radiative effects (ACREs) and the large-scale circulation influences the ITCZ position in an atmospheric general circulation model. Simulations are performed in an idealized aquaplanet setup and the longwave and shortwave ACREs are turned off individually or jointly. The low-level moist static energy (MSE) is shown to be a good predictor of the ITCZ position. Therefore, a mechanism is proposed that explains the changes in MSE and thus ITCZ position due to ACREs consistently across simulations. The mechanism implies that the ITCZ moves equatorward if the Hadley circulation strengthens because of the increased upgradient advection of low-level MSE off the equator. The longwave ACRE increases the meridional heating gradient in the tropics and as a response the Hadley circulation strengthens and the ITCZ moves equatorward. The shortwave ACRE has the opposite effect. The total ACRE pulls the ITCZ equatorward. This mechanism is discussed in other frameworks involving convective available potential energy, gross moist stability, and the energy flux equator. It is thus shown that the response of the large-scale circulation to the shortwave and longwave ACREs is a fundamental driver of changes in the ITCZ position.


2005 ◽  
Vol 5 (6) ◽  
pp. 12569-12615 ◽  
Author(s):  
V. S. Semeena ◽  
J. Feichter ◽  
G. Lammel

Abstract. A global multicompartment model which is based on a 3-D atmospheric general circulation model (ECHAM5) coupled to 2-D soil, vegetation and sea surface mixed layer reservoirs, is used to simulate the atmospheric transports and total environmental fate of dichlorodiphenyltrichloroethane (DDT) and γ-hexachlorocyclohexane (γ-HCH, lindane). Emissions into the model world reflect the substance's agricultural usage in 1980 and 1990 and same amounts in sequential years are applied. Four scenarios of DDT usage and atmospheric decay and one scenario of γ-HCH are studied over a decade. The global environment is predicted to be contaminated by the substances within ca. 2 a (years). DDT reaches quasi-steady state within 3–4 a in the atmosphere and vegetation compartments, ca. 6 a in the sea surface mixed layer and near to or slightly more than 10 a in soil. Lindane reaches quasi-steady state in the atmosphere and vegetation within 2 a, in soils within 8 years and near to or slightly more than 10 a and in the sea surface mixed layer. The substances' differences in environmental behaviour translate into differences in the compartmental distribution and total environmental residence time, τoverall. τoverall≈0.8 a for γ-HCH's and ≈1.0–1.3 a for the various DDT scenarios. Both substances' distributions are predicted to migrate in northerly direction, 5–12° for DDT and 6.7° for lindane between the first and the tenth year in the environment. Cycling in various receptor regions is a complex superposition of influences of regional climate, advection, and the substance's physico-chemical properties. As a result of these processes the model simulations show that remote boreal regions are not necessarily less contaminated than tropical receptor regions. Although the atmosphere accounts for only 1% of the total contaminant burden, transport and transformation in the atmosphere is key for the distribution in other compartments. Hence, besides the physico-chemical properties of pollutants the location of application (entry) affects persistence and accumulation emphasizing the need for georeferenced exposure models.


2008 ◽  
Vol 38 (11) ◽  
pp. 2438-2460 ◽  
Author(s):  
P. J. Hosegood ◽  
M. C. Gregg ◽  
M. H. Alford

Abstract A depth-cycling towed conductivity–temperature–depth (CTD) and vessel-mounted acoustic Doppler current profiler (ADCP) were used to obtain four-dimensional measurements of the restratification of the surface mixed layer (SML) at a submesoscale lateral density gradient near the subtropical front. With the objective of studying the role of horizontal processes in restratification, the thermohaline and velocity fields were monitored for 33 h by 16 small-scale (≤15 km2) surveys centered on a drogued float. Daytime warming by insolation caused a unidirectional displacement of the initially vertical isopycnals toward increasing density. Across the entire SML (50-m vertical scale), solar insolation accounted for 60% of observed restratification, but over 10-m scales, the percentage decreased with depth from 80% at 25–35 m to ≤25% at 55–65 m. Below 35 m, stratification was enhanced by the vertically sheared horizontal advection of the lateral density gradient due to a near-inertial wave of ∼100-m vertical wavelength that rotated anticyclonically at the inertial frequency. The phase and similar period (25.4 h) of the local inertial period to the diurnal cycle ensured constructive interference with isopycnal displacements due to insolation. Restratification by sheared advection matched that predicted due to vertically sheared inertial oscillations generated during the geostrophic adjustment of a density front, but direct wind forcing may also have generated the wave that was subsequently modified by interaction with mesoscale vorticity associated with a nearby large-scale front. By further including the effects of lateral uncompensated thermohaline inhomogeneity, the authors can account for 100% ± 20% of the observed N 2 during daytime restratification. No detectable restratification due to the slumping of horizontal density gradients under gravity alone was found.


2017 ◽  
Vol 47 (9) ◽  
pp. 2173-2188 ◽  
Author(s):  
S. D. Bachman ◽  
J. R. Taylor ◽  
K. A. Adams ◽  
P. J. Hosegood

AbstractSubmesoscale dynamics play a key role in setting the stratification of the ocean surface mixed layer and mediating air–sea exchange, making them especially relevant to anthropogenic carbon uptake and primary productivity in the Southern Ocean. In this paper, a series of offline-nested numerical simulations is used to study submesoscale flow in the Drake Passage and Scotia Sea regions of the Southern Ocean. These simulations are initialized from an ocean state estimate for late April 2015, with the intent to simulate features observed during the Surface Mixed Layer at Submesoscales (SMILES) research cruise, which occurred at that time and location. The nested models are downscaled from the original state estimate resolution of 1/12° and grid spacing of about 8 km, culminating in a submesoscale-resolving model with a resolution of 1/192° and grid spacing of about 500 m. The submesoscale eddy field is found to be highly spatially variable, with pronounced hot spots of submesoscale activity. These areas of high submesoscale activity correspond to a significant difference in the 30-day average mixed layer depth between the 1/12° and 1/192° simulations. Regions of large vertical velocities in the mixed layer correspond with high mesoscale strain rather than large . It is found that is well correlated with the mesoscale density gradient but weakly correlated with both the mesoscale kinetic energy and strain. This has implications for the development of submesoscale eddy parameterizations that are sensitive to the character of the large-scale flow.


2006 ◽  
Vol 36 (10) ◽  
pp. 1928-1939 ◽  
Author(s):  
B. Ozen ◽  
S. A. Thorpe ◽  
U. Lemmin ◽  
T. R. Osborn

Abstract Measurements of temperature, velocity, and microscale velocity shear were made from the research submarine F. A. Forel in the near-surface mixed layer of Lake Geneva under conditions of moderate winds of 6–8 m s−1 and of net heating at the water surface. The submarine carried arrays of thermistors and a turbulence package, including airfoil shear probes. The rate of dissipation of turbulent kinetic energy per unit mass, estimated from the variance of the shear, is found to be lognormally distributed and to vary with depth roughly in accordance with the law of the wall at the measurement depths, 15–20 times the significant wave height. Measurements revealed large-scale structures, coherent over the 2.38-m vertical extent sampled by a vertical array of thermistors, consisting of filaments tilted in the wind direction. They are typically about 1.5 m wide, decreasing in width in the upward direction, and are horizontally separated by about 25 m in the downwind direction. Originating in the upper thermocline, they are characterized in the mixed layer by their relatively low temperature and low rates of dissipation of turbulent kinetic energy and by an upward vertical velocity of a few centimeters per second.


Sign in / Sign up

Export Citation Format

Share Document