Flux dynamics during the superconducting transition of a YBCO sample exposed to a temperature gradient

1998 ◽  
Vol 300 (1-2) ◽  
pp. 6-16 ◽  
Author(s):  
R Laiho ◽  
E Lähderanta ◽  
A.C Bódi
1992 ◽  
Vol 290 ◽  
Author(s):  
M. R. Freeman

AbstractA fast time-domain magneto-optical technique is used to explore magnetic flux dynamics in the optically driven nonequilibrium state of Type I superconducting Pb films. It is found that the effective penetration of flux through the nonequilibrium intermediate state can be dramatically faster than through the normal metal. The system is probed through the application of rapid transient magnetic field pulses. Above the superconducting transition temperature, a direct measure of the diffusion coefficient of the magnetic field in the normal metal is obtained, on a time scale where the inhomogeneous spatial distribution of scattering sites is relevant. In the nonequilibrium superconductor the observations are dominated by coupling of the field transients to local motion of magnetic flux threading the normal domains. Studies as a function of how far the system is driven from equilibrium, and of the effect of a static applied magnetic field, indicate that the observations reflect the dynamics of normal/superconducting interfaces, and are strongly dependent on the microscopic arrangement of the intermediate state. By contrasting the response of pure Pb films to that of Pb1−xInx alloys, a comparison to Type II superconductivity is made.


2005 ◽  
Vol 19 (20) ◽  
pp. 3243-3248
Author(s):  
JE HUAN KOO ◽  
DOH-HYUN GILL ◽  
GUANGSUP CHO

We investigate the superconducting transition temperature, Tc in the presence of the magnetic field, H in CeCoIn 5. It is shown that phonon-enhanced spin fluctuations drive this superconductivity once more as suggested by us (Phys. Rev.B61, 4289). We know the magnetic dependence of our transition temperature is in good correspondence with experimental data. It is elucidated that the Fulde–Ferrell–Larkin–Ovchinnikov (FFLO) superconducting states are closely related to the temperature gradient contributed by the external magnetic field.


1988 ◽  
Vol 102 ◽  
pp. 41
Author(s):  
E. Silver ◽  
C. Hailey ◽  
S. Labov ◽  
N. Madden ◽  
D. Landis ◽  
...  

The merits of microcalorimetry below 1°K for high resolution spectroscopy has become widely recognized on theoretical grounds. By combining the high efficiency, broadband spectral sensitivity of traditional photoelectric detectors with the high resolution capabilities characteristic of dispersive spectrometers, the microcalorimeter could potentially revolutionize spectroscopic measurements of astrophysical and laboratory plasmas. In actuality, however, the performance of prototype instruments has fallen short of theoretical predictions and practical detectors are still unavailable for use as laboratory and space-based instruments. These issues are currently being addressed by the new collaborative initiative between LLNL, LBL, U.C.I., U.C.B., and U.C.D.. Microcalorimeters of various types are being developed and tested at temperatures of 1.4, 0.3, and 0.1°K. These include monolithic devices made from NTD Germanium and composite configurations using sapphire substrates with temperature sensors fabricated from NTD Germanium, evaporative films of Germanium-Gold alloy, or material with superconducting transition edges. A new approache to low noise pulse counting electronics has been developed that allows the ultimate speed of the device to be determined solely by the detector thermal response and geometry. Our laboratory studies of the thermal and resistive properties of these and other candidate materials should enable us to characterize the pulse shape and subsequently predict the ultimate performance. We are building a compact adiabatic demagnetization refrigerator for conveniently reaching 0.1°K in the laboratory and for use in future satellite-borne missions. A description of this instrument together with results from our most recent experiments will be presented.


Author(s):  
M. A. Kirk ◽  
M. C. Baker ◽  
B. J. Kestel ◽  
H. W. Weber

It is well known that a number of compound superconductors with the A15 structure undergo a martensite transformation when cooled to the superconducting state. Nb3Sn is one of those compounds that transforms, at least partially, from a cubic to tetragonal structure near 43 K. To our knowledge this transformation in Nb3Sn has not been studied by TEM. In fact, the only low temperature TEM study of an A15 material, V3Si, was performed by Goringe and Valdre over 20 years ago. They found the martensite structure in some foil areas at temperatures between 11 and 29 K, accompanied by faults that consisted of coherent twin boundaries on {110} planes. In pursuing our studies of irradiation defects in superconductors, we are the first to observe by TEM a similar martensite structure in Nb3Sn.Samples of Nb3Sn suitable for TEM studies have been produced by both a liquid solute diffusion reaction and by sputter deposition of thin films.


1978 ◽  
Vol 39 (C6) ◽  
pp. C6-448-C6-450 ◽  
Author(s):  
M. W. Young ◽  
J. M.D. Thomas ◽  
C. J. Adkins ◽  
J. W. Tate

2013 ◽  
Vol 38 (4) ◽  
pp. 565-570 ◽  
Author(s):  
Bartłomiej Kruk

Abstract Research in termoacoustics began with the observation of the heat transfer between gas and solids. Using this interaction the intense sound wave could be applied to create engines and heat pumps. The most important part of thermoacoustic devices is a regenerator, where press of conversion of sound energy into thermal or vice versa takes place. In a heat pump the acoustic wave produces the temperature difference at the two ends of the regenerator. The aim of the paper is to find the influence of the material used for the construction of a regenerator on the properties of a thermoacoustic heat pump. Modern technologies allow us to create new materials with physical properties necessary to increase the temperature gradient on the heat exchangers. The aim of this paper is to create a regenerator which strongly improves the efficiency of the heat pump.


Sign in / Sign up

Export Citation Format

Share Document