Implementing a modified Marciniak–Kuczynski model using the finite element method for the simulation of sheet metal deep drawing

2002 ◽  
Vol 130-131 ◽  
pp. 135-144 ◽  
Author(s):  
S.H Evangelista ◽  
J Lirani ◽  
H.A Al-Qureshi
2011 ◽  
Vol 474-476 ◽  
pp. 251-254
Author(s):  
Jian Jun Wu ◽  
Wei Liu ◽  
Yu Jing Zhao

The multi-step forward finite element method is presented for the numerical simulation of multi-step sheet metal forming. The traditional constitutive relationship is modified according to the multi-step forming processes, and double spreading plane based mapping method is used to obtain the initial solutions of the intermediate configurations. To verify the multi-step forward FEM, the two-step simulation of a stepped box deep-drawing part is carried out as it is in the experiment. The comparison with the results of the incremental FEM and test shows that the multi-step forward FEM is efficient for the numerical simulation of multi-step sheet metal forming processes.


2012 ◽  
Vol 628 ◽  
pp. 461-468
Author(s):  
D.W. Jung ◽  
D.H. Kim ◽  
B.C. Kim

The characteristics of the sheet metal process include the loss of material during the process, short processing time and excellent price and strength. The sheet metal process with the above characteristics is commonly used in the industrial field, but in order to analyze irregular field problems, a reliable and economical analysis method are needed. The finite element method is a very effective method to simulate the forming processes with a good prediction of the deformation behaviour. Among the finite element method, the static-implicit finite element method is applied effectively in order to analyze the real-size auto-body panel stamping processes, which include the forming stage.


2019 ◽  
Vol 957 ◽  
pp. 103-110
Author(s):  
Dan Chiorescu ◽  
Esmeralda Chiorescu ◽  
Gheorghe Nagîţ ◽  
Sergiu Constantin Olaru

Deep drawing is a complex process influenced by the geometric parameters of the die-punch system. In the present paper we study the behavior of the semi-finished product, in the process of drawing deep cylindrical parts, using the finite element method and the software package of the ANSYS program. In order to reduce the cost and design time, an analysis of the variation of the radius connection is carried out, resulting in low energy consumption, using the finite element method. By analysing the radius of connection of the plate, we identify future directions useful in substantiating the elaboration of a judicious experimental program and optimizing the geometric shape of the finished parts.


2014 ◽  
Vol 626 ◽  
pp. 334-339
Author(s):  
Te Fu Huang ◽  
Hsin Yi Hsien ◽  
Yan Jia Chen

The friction holding effect and the friction reducing effect occurring during Hydraulic Deep Drawing and the pre-bulging resulting in more plastic deformation on products are applied on sheet hydro-forming. For Hydraulic Deep Drawing of a square cup, the thickness distribution and the relation between the height and the pressure of pre-bulging are simulated with SPCC steels as the specimen by the finite element method. An experimental apparatus of sheet hydro-forming has been constructed to carry out the hydraulic deep drawing experiments of square cups. Experimental thickness distribution and punch load are compared with simulation results. Good agreement was found. The flow patterns of the circular and square blanks with the condition of being firmly pressed against the punch observed from the experiments are in agreement with the predicted results.Keywords:Hydraulic Deep Drawing, sheet hydro-forming, finite element method


2014 ◽  
Vol 1061-1062 ◽  
pp. 584-587
Author(s):  
Xiao Liang Chen ◽  
Zuan Tian ◽  
Yuan Ping Li

With the development of the society, sheet metal filing cabinets have become popular in the office. When filing cabinets store too many paper documents, the interlayer splints often fail because of the failure of the small brackets below. The stress and deformation of brackets were studied by the theoretical method and the finite element method. Results show some small machining shape defects have little influence on the mechanical behavior of brackets. The failure reason of small brackets is not the strength, but the instability.


2015 ◽  
Vol 3 (1) ◽  
pp. 63-70 ◽  
Author(s):  
Ganesh M. Kakandikar ◽  
Vilas M. Nandedkar

Abstract Deep drawing is a forming process in which a blank of sheet metal is radially drawn into a forming die by the mechanical action of a punch and converted to required shape. Deep drawing involves complex material flow conditions and force distributions. Radial drawing stresses and tangential compressive stresses are induced in flange region due to the material retention property. These compressive stresses result in wrinkling phenomenon in flange region. Normally blank holder is applied for restricting wrinkles. Tensile stresses in radial direction initiate thinning in the wall region of cup. The thinning results into cracking or fracture. The finite element method is widely applied worldwide to simulate the deep drawing process. For real-life simulations of deep drawing process an accurate numerical model, as well as an accurate description of material behavior and contact conditions, is necessary. The finite element method is a powerful tool to predict material thinning deformations before prototypes are made. The proposed innovative methodology combines two techniques for prediction and optimization of thinning in automotive sealing cover. Taguchi design of experiments and analysis of variance has been applied to analyze the influencing process parameters on Thinning. Mathematical relations have been developed to correlate input process parameters and Thinning. Optimization problem has been formulated for thinning and Genetic Algorithm has been applied for optimization. Experimental validation of results proves the applicability of newly proposed approach. The optimized component when manufactured is observed to be safe, no thinning or fracture is observed.


Sign in / Sign up

Export Citation Format

Share Document