WO3 and WTiO thin-film gas sensors prepared by sol–gel dip-coating

2002 ◽  
Vol 86 (1) ◽  
pp. 75-80 ◽  
Author(s):  
J. Shieh ◽  
H.M. Feng ◽  
M.H. Hon ◽  
H.Y. Juang
Keyword(s):  
Sol Gel ◽  
2010 ◽  
Vol 55 (3) ◽  
pp. 385-393 ◽  
Author(s):  
Dayene M. Carvalho ◽  
Jorge L. B. Maciel ◽  
Leandro P. Ravaro ◽  
Rogério E. Garcia ◽  
Valdemir G. Ferreira ◽  
...  

2006 ◽  
Vol 317-318 ◽  
pp. 807-810 ◽  
Author(s):  
Chang Yeoul Kim ◽  
Jin Wook Choi ◽  
Tae Yeoung Lim ◽  
Duck Kyun Choi

Electrochromic WO3 thin film was prepared by using tungsten metal solution in hydrogen peroxide as a starting solution and by sol-gel dip coating method. XRD pattern showed that tungsten oxide crystal phase formed at 400. In the view of electrochemical property, WO3 thin film which was heat-treated at 300 and was amorphous had better than that of the crystalline phase.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Rigoberto Regalado-Raya ◽  
Rubí Romero-Romero ◽  
Osmín Avilés-García ◽  
Jaime Espino-Valencia

Photocatalytic materials based on silica-titania (SiO2-TiO2) were synthesized by sol-gel and dip-coating method. TEOS and titanium butoxide were used as precursors of the silica-titania, respectively. A thin film with anatase phase was obtained on the surface of the support. The effect of variables as dispersion mechanism, immersion time, and number of treatment cycles were studied. The materials were characterized using X-ray diffraction, scanning electron microscopy, energy dispersion scanning, and N2 adsorption-desorption. The highest crystallinity of TiO2 on silica, high specific surface area in TiO2-SiO2 materials, and thin film formation were obtained by using a stirring plate and minimum immersion time. The so synthesized catalyst allowed the production of formaldehyde from the photocatalyzed methanol oxidation in a packed-bed reactor.


Cerâmica ◽  
2007 ◽  
Vol 53 (326) ◽  
pp. 187-191 ◽  
Author(s):  
L. P. Ravaro ◽  
E. A. Morais ◽  
L. V. A. Scalvi ◽  
M. Siu Li

Emission from Er-doped SnO2 thin film deposited via sol-gel by the dip coating technique is obtained in the range 500-700 nm with peak at 530 nm (green). Electron-hole generation in the tin dioxide matrix is used to promote the rare-earth ion excitation. Evaluation of crystallite dimensions through X-ray diffraction results leads to nanoscopic size, what could play a relevant role in the emission spectra. The electron-hole mechanism is also responsible for the excitation of the transition in the 1540 nm range in powders obtained from the same precursor solution of films. The thin film matrix presents a very useful shape for technological application, since it allows integration in optical devices and the application of electric fields to operate electroluminescent devices.


ChemPhotoChem ◽  
2017 ◽  
Vol 1 (6) ◽  
pp. 273-280 ◽  
Author(s):  
Samantha Hilliard ◽  
Dennis Friedrich ◽  
Stéphane Kressman ◽  
Henri Strub ◽  
Vincent Artero ◽  
...  

2015 ◽  
Vol 1131 ◽  
pp. 237-241 ◽  
Author(s):  
Akkarat Wongkaew ◽  
Chanida Soontornkallapaki ◽  
Naritsara Amhae ◽  
Wichet Lamai

This work aims to study the effect of ZnO containing in TiO2/SiO2 film on the superhydrophilic property after exposed to different types of light. The metal solutions were prepared by sol-gel technique and the film was deposited on glass slides by dip coating method. The parameter studied was the amount of ZnO in the TiO2/SiO2 film. The contents of ZnO were 5-20% weight (increased by 5%). The amount of TiO2 was constant at 30% weight. The obtained films were analyzed for their roughness. The results indicated that film roughness changed according to the ZnO contents. With 5%ZnO in the thin film, the roughness was 0.726 nm while 20%ZnO obtained the roughness of 2.128 nm. UV-Vis spectrophotometer was used for measuring of transmittance of films. At wavelength of 550 nm, the transmittances of each film were greater than 90%. Band gap energy of each film was calculated from the transmittance data. It was found that the average band gap energy of the films was 2.47 eV. Then, the films contained various amount of ZnO were grouped into 2 sets. The first set was exposed to visible light while the other set was exposed to UV. The duration of exposure was 5 hr. Both sets of films after exposed to any light were kept in a black box controlled relative humidity of 85%. Each film was measured contact angle every day. It was found that the 30%TiO2/5%Zn/SiO2 film exposed to visible light showed the best superhydrophilic property. The contact angle was about 0-5° within 3 days. This may due to the reduction of band gap energy in the presence of ZnO in TiO2/SiO2 films to 2.41 eV and the roughness of the film.


2020 ◽  
Vol 307 ◽  
pp. 51-57
Author(s):  
Amna Afiqah Nasution Hakim ◽  
Affa Rozana Abdul Rashid ◽  
N. Arsad ◽  
Aisyah Hanim Surani

ZnO thin films have been prepared by the dip coating sol gel method. Zinc acetate dihydrate, 2-methoxyethanol and monoethanolamine (MEA) were used as precursor, solvent and stabilizer respectively. The synthesized sample was coated on glass substrate as the molarity of the solution was kept constant at 0.1 M. The structural properties and surface morphologies of ZnO thin film were characterized by XRD and FESEM. The optical properties such as transmittance, absorbance, reflectance and refractive index were studied by using UV-Vis. The functional group of the synthesized sample were verified by using FTIR. Average crystallite sizes of the samples were calculated by using Debye-Scherrer's formula. Next, ZnO is coated on POF in order to examine the reaction towards UV light.


2007 ◽  
Vol 336-338 ◽  
pp. 585-588 ◽  
Author(s):  
Dao Qi Xue ◽  
Jun Ying Zhang ◽  
Hai Bing Feng ◽  
Tian Min Wang

ZnO:Eu3+ films were obtained by dip-coating method and influence of heat treatment on luminescent properties was investigated. Emission and excitation spectra revealed that the organic and nitrate molecules, which adhered on the surface of films when the samples were treated at lower temperatures (300oC-400oC), played an important role on the luminescent properties. At higher temperatures (500oC-800oC), the luminescence spectra of ZnO and Eu3+ were quite different with those treated at lower temperatures. Energy transferred from ZnO host to Eu3+ was obviously observed in the emission and excitation spectra. The luminescence mechanism was discussed briefly.


Sign in / Sign up

Export Citation Format

Share Document