Heat treatment effects on the optical properties of Sol–gel Ta2O5 thin films

1999 ◽  
Vol 59 (4) ◽  
pp. 367-375 ◽  
Author(s):  
Farhad E Ghodsi ◽  
Fatma Z Tepehan
2017 ◽  
Vol 64 ◽  
pp. 288-294 ◽  
Author(s):  
Subhabrata Ghosh ◽  
Uma Mahendra Kumar K. ◽  
B.N. Shivakiran Bhaktha

2019 ◽  
Vol 7 (1) ◽  
pp. 28
Author(s):  
KOMARAIAH DURGAM ◽  
RADHA EPPA ◽  
REDDY M. V. RAMANA ◽  
KUMAR J. SIVA ◽  
R. SAYANNA ◽  
...  

Author(s):  
Atefeh Nazari Setayesh ◽  
Hassan Sedghi

Background: In this work, CdS thin films were synthesized by sol-gel method (spin coating technique) on glass substrates to investigate the optical behavior of the film. Methods: Different substrate spin coating speeds of 2400, 3000, 3600 rpm and different Ni dopant concentrations of 0 wt.%, 2.5 wt.%, 5 wt.%) were investigated. The optical properties of thin films such as refraction index, extinction coefficient, dielectric constant and optical band gap energy of the layers were discussed using spectroscopic ellipsometry method in the wavelength range of 300 to 900 nm. Results: It can be deduced that substrate rotation speed and dopant concentration has influenced the optical properties of thin films. By decreasing rotation speed of the substrate which results in films with more thicknesses, more optical interferences were appeared in the results. Conclusion: The samples doped with Ni comparing to pure ones have had more optical band gap energy.


2014 ◽  
Vol 23 (4) ◽  
pp. 047805 ◽  
Author(s):  
Meng-Meng Cao ◽  
Xiao-Ru Zhao ◽  
Li-Bing Duan ◽  
Jin-Ru Liu ◽  
Meng-Meng Guan ◽  
...  

2011 ◽  
Vol 509 (30) ◽  
pp. 7854-7860 ◽  
Author(s):  
A. Esmaielzadeh Kandjani ◽  
M. Farzalipour Tabriz ◽  
O. Mohammad Moradi ◽  
H.R. Rezaeian Mehr ◽  
S. Ahmadi Kandjani ◽  
...  

2007 ◽  
Vol 336-338 ◽  
pp. 505-508
Author(s):  
Cheol Jin Kim ◽  
In Sup Ahn ◽  
Kwon Koo Cho ◽  
Sung Gap Lee ◽  
Jun Ki Chung

LiNiO2 thin films for the application of cathode of the rechargeable battery were fabricated by Li ion diffusion on the surface oxidized NiO layer. Bi-axially textured Ni-tapes with 50 ~ 80 μm thickness were fabricated using cold rolling and annealing of Ni-rod prepared by cold isostatic pressing of Ni powder. Surface oxidation of Ni-tapes were conducted using tube furnace or line-focused infrared heater at 700 °C for 150 sec in flowing oxygen atmosphere, resulted in NiO layer with thickness of 400 and 800 μm, respectively. After Li was deposited on the NiO layer by thermal evaporation, LiNiO2 was formed by Li diffusion through the NiO layer during subsequent heat treatment using IR heater with various heat treatment conditions. IR-heating resulted in the smoother surface and finer grain size of NiO and LiNiO2 layer compared to the tube-furnace heating. The average grain size of LiNiO2 layer was 0.5~1 μm, which is much smaller than that of sol-gel processed LiNiO2. The reacted LiNiO2 region showed homogeneous composition throughout the thickness and did not show any noticeable defects frequently found in the solid state reacted LiNiO2, but crack and delamination between the reacted LiNiO2 and Ni occurred as the reaction time increased above 4hrs.


2011 ◽  
Vol 11 (5) ◽  
pp. 1243-1248 ◽  
Author(s):  
K.J. Chen ◽  
F.Y. Hung ◽  
S.J. Chang ◽  
S.J. Young ◽  
Z.S. Hu

2014 ◽  
Vol 318 ◽  
pp. 309-313 ◽  
Author(s):  
Ebru Gungor ◽  
Tayyar Gungor ◽  
Deniz Caliskan ◽  
Abdullah Ceylan ◽  
Ekmel Ozbay

Sign in / Sign up

Export Citation Format

Share Document