Modification of analytical procedures for determining vitamin C enzyme (L-gulonolactone oxidase) activity in swine liver

2003 ◽  
Vol 14 (3) ◽  
pp. 139-146 ◽  
Author(s):  
San Ching ◽  
Donald C. Mahan ◽  
R.égis Moreau ◽  
Konrad Dabrowski
2017 ◽  
Vol 121 (suppl_1) ◽  
Author(s):  
Adolfo G Mauro ◽  
Donatas Kraskauskas ◽  
Bassem M Mohammed ◽  
Bernard J Fisher ◽  
Eleonora Mezzaroma ◽  
...  

Introduction: L-gulonolactone oxidase (Gulo) is the rate limiting enzyme for Vitamin C (VitC) biosynthesis. Humans rely on dietary VitC for collagen synthesis, extracellular matrix formation, and tissue regeneration. VitC deficiency is an unrecognized condition and its role in cardiac homeostasis and post-acute myocardial infarction (AMI) remodeling is unknown. Hypothesis: Low levels of VitC impair cardiac function and tissue repair following AMI. Methods: Adult male Gulo -/- knockout mice (C57BL6 background, N=8) and control C57BL (N=8), which are able to synthesize VitC were used. VitC deficiency was maintained supplying low levels of VitC (30mg/l) to Gulo -/- mice in drinking water. Mice underwent M-mode and Doppler echocardiography to measure left ventricular (LV) diameters and wall thicknesses, fractional shortening (FS), E and A waves, E/A ratio, isovolumetric relaxation time (IRT) and myocardial performance index (MPI). Experimental AMI was induced by coronary artery ligation for 7 days. An additional group of Gulo -/- were mice supplemented with physiological levels of VitC (330 mg/l) and underwent AMI. Results: VitC deficient Gulo -/- mice exhibited significantly reduced LV wall thicknesses, reduced FS, and impaired diastolic function, measured as significantly reduced E/A ratio and longer IRT (Panel A, B & C). Following AMI, 100% (8/8) of deficient Gulo -/- mice died within 5 days. Supplementation with physiological levels of VitC significantly improved survival after AMI (Panel D). Conclusion: VitC deficiency impairs systolic and diastolic function. Moreover, VitC is critical for the post-AMI survival.


Antioxidants ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 519 ◽  
Author(s):  
Costantino Paciolla ◽  
Stefania Fortunato ◽  
Nunzio Dipierro ◽  
Annalisa Paradiso ◽  
Silvana De Leonardis ◽  
...  

Vitamin C (l-ascorbic acid) is an excellent free radical scavenger, not only for its capability to donate reducing equivalents but also for the relative stability of the derived monodehydroascorbate radical. However, vitamin C is not only an antioxidant, since it is also a cofactor for numerous enzymes involved in plant and human metabolism. In humans, vitamin C takes part in various physiological processes, such as iron absorption, collagen synthesis, immune stimulation, and epigenetic regulation. Due to the functional loss of the gene coding for l-gulonolactone oxidase, humans cannot synthesize vitamin C; thus, they principally utilize plant-based foods for their needs. For this reason, increasing the vitamin C content of crops could have helpful effects on human health. To achieve this objective, exhaustive knowledge of the metabolism and functions of vitamin C in plants is needed. In this review, the multiple roles of vitamin C in plant physiology as well as the regulation of its content, through biosynthetic or recycling pathways, are analyzed. Finally, attention is paid to the strategies that have been used to increase the content of vitamin C in crops, emphasizing not only the improvement of nutritional value of the crops but also the acquisition of plant stress resistance.


eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Glen Wheeler ◽  
Takahiro Ishikawa ◽  
Varissa Pornsaksit ◽  
Nicholas Smirnoff

Ascorbic acid (vitamin C) is an enzyme co-factor in eukaryotes that also plays a critical role in protecting photosynthetic eukaryotes against damaging reactive oxygen species derived from the chloroplast. Many animal lineages, including primates, have become ascorbate auxotrophs due to the loss of the terminal enzyme in their biosynthetic pathway, l-gulonolactone oxidase (GULO). The alternative pathways found in land plants and Euglena use a different terminal enzyme, l-galactonolactone dehydrogenase (GLDH). The evolutionary processes leading to these differing pathways and their contribution to the cellular roles of ascorbate remain unclear. Here we present molecular and biochemical evidence demonstrating that GULO was functionally replaced with GLDH in photosynthetic eukaryote lineages following plastid acquisition. GULO has therefore been lost repeatedly throughout eukaryote evolution. The formation of the alternative biosynthetic pathways in photosynthetic eukaryotes uncoupled ascorbate synthesis from hydrogen peroxide production and likely contributed to the rise of ascorbate as a major photoprotective antioxidant.


2004 ◽  
Vol 15 (4) ◽  
pp. 323-333 ◽  
Author(s):  
Lara Hasan ◽  
Peter V�geli ◽  
Peter Stoll ◽  
?pela ?pilar Gerald KramerStranzinger ◽  
Stefan Neuenschwander

2020 ◽  
Author(s):  
Yufei Zhu ◽  
Jianfei Zhao ◽  
Wei Guo ◽  
Kailong Qin ◽  
Jiakun Yan ◽  
...  

Abstract Background: Some previous studies have indicated that in ovo feeding (IOF) of vitamin C (VC) had positive effects on the performance in poultry. In order to realize embryonic VC supplementation, an idea about hen’s dietary VC supplementation to achieve VC enrichment in produced eggs was proposed. And this study was executed to investigate the effects of dietary VC supplementation on synthesis and transportation of VC in layers and VC deposition status in produced eggs.Results: Compared with Arbor Acres breeder eggs, egg VC content was lower in Isa Brown breeder eggs and Hy-Line Brown layer eggs (P < 0.05). Sodium-dependent vitamin C transporter 1 (SVCT1) and SVCT2 expression was higher in ileum than in duodenum and jejunum (P < 0.05). SVCT1 expression was extremely higher in magnum than in ovary, while SVCT2 expression was lower (P < 0.05). L-gulonolactone oxidase (GLO) expression was extremely higher and SVCT1 expression was higher in kidney than in liver, while SVCT2 was lower (P < 0.05). 400 mg/kg VC supplementation increased SVCT1 expression in duodenum, ovary and magnum, while decreased GLO and SVCT1 expression in liver (P < 0.05). 200 and 400 mg/kg VC supplementation increased SVCT2 expression in duodenum, while decreased GLO and SVCT1 expression in kidney and SVCT2 expression in liver (P < 0.05).Conclusions: Hy-Line Brown layer was a useful model for investigating effects of dietary VC supplementation on VC deposition in produced eggs. Dietary VC supplementation promoted VC absorption in duodenum and jejunum, but reduced endogenous VC synthesis in liver and kidney. Although dietary VC supplementation enhanced VC transportation in ovary and magnum, it finally failed to increase VC deposition in produced eggs.


2008 ◽  
Vol 0 (ja) ◽  
pp. 081015093227032
Author(s):  
Yi Li ◽  
Chang Xin Shi ◽  
Jack Rosenfeld ◽  
Karen L. Mossman ◽  
Yong Chool Boo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document