Nigerian oil and gas company uses SUEZ technology to produce drinking water

2020 ◽  
Vol 2020 (4) ◽  
pp. 4
Keyword(s):  
Author(s):  
А.В. Селюков

Сообщается о новой комплексной технологии кондиционирования холодных маломинерализованных подземных вод. Технология разрабатывалась для целей хозяйственно-питьевого водоснабжения нефтегазоносных районов Тюменского Севера. При благополучном соотношении ресурсов пресной воды и фактического объема водопотребления в этом регионе России вопрос питьевого водоснабжения из подземных горизонтов остается острым из-за проблемного качества воды и низкой эффективности очистных сооружений. Технология предназначена для очистки от железа, марганца, сероводорода и обеспечивает стабилизационную обработку воды. Основные работы, включавшие лабораторные исследования и пилотные испытания, выполнены в период 2001–2020 годов. На основе разработанных технологических решений построены и успешно эксплуатируются водопроводные очистные сооружения в городах Ноябрьске (75 тыс. м3/сут, 2006 г.) и Новом Уренгое (65 тыс. м3/сут, 2007 г.). Дополнительные испытания технологии, проведенные в Ханты-Мансийске и Комсомольске-на-Амуре, подтвердили ее эффективность. Технология предусматривает применение в качестве основных реагентов пероксида водорода и перманганата калия для окисления примесей воды, а также щелочного реагента для корректировки рН и стабилизационной обработки. Для обеспечения требований стандарта ВОЗ по содержанию железа и марганца дополнительно может использоваться флокулянт. Обобщены данные по составу подземных вод, использованных для испытаний, и на их основе определена рекомендуемая область применения разработанной технологии. Приведена принципиальная технологическая схема кондиционирования холодных маломинерализованных подземных вод, учитывающая 15-летний опыт эксплуатации построенных станций, а также современные решения по дозированию и смешению реагентов. Указано, что данная технология обеспечивает также частичное снижение содержания кремния в очищенной воде (до 30%). Разработанная технология позволяет получать стабильную питьевую воду при нормативном остаточном содержании железа, марганца и сероводорода. An advanced integrated technology for conditioning low-mineralized cold groundwater is presented. The technology was developed for the purpose of supplying drinking water to the oil and gas-bearing regions of the Tyumen North. With a favorable ratio of fresh water resources and the actual volume of water consumption in this region of Russia, the issue of drinking water supply from underground aquifers remains acute due to the problematic water quality and low efficiency of the treatment facilities. The technology is intended for removing iron, manganese, hydrogen sulfide and providing for the stabilization treatment of water. The main work including laboratory studies and pilot tests was carried out in the period 2001–2020. On the basis of the developed process solutions, water treatment facilities have been built and successfully operated in the cities of Noyabrsk (75 thousand m3/day, 2006) and Novy Urengoy (65 thousand m3/day, 2007). Additional tests of the technology carried out in Khanty-Mansiisk and Komsomolsk-on-Amur confirmed its effectiveness. The technology involves using hydrogen peroxide and potassium permanganate as the basic chemicals for the oxidation of water pollutants, as well as using an alkaline chemical for pH adjustment and stabilization treatment. To meet the requirements of the WHO standard for the concentrations of iron and manganese, an additional flocculant can be used. The data on the composition of groundwater used for testing are summarized, and on their basis the recommended area of ​​application of the developed technology is determined. The basic process flow scheme of conditioning low-mineralized cold groundwater in view of 15 years of experience in operating the existing facilities, and of advanced solutions for dosing and mixing of chemicals, is presented. It is indicated that the technology also provides for a partial reduction in the silicon concentration in purified water (up to 30%). The developed technology ensures stable drinking water with a standard residual concentration of iron, manganese and hydrogen sulfide.


2018 ◽  
Vol 167 ◽  
pp. 550-557 ◽  
Author(s):  
Elise G. Elliott ◽  
Xiaomei Ma ◽  
Brian P. Leaderer ◽  
Lisa A. McKay ◽  
Courtney J. Pedersen ◽  
...  

2019 ◽  
Vol 121 ◽  
pp. 05005
Author(s):  
Agatha Swierczynski

Corrosion is still responsible for large economic losses in many and very different industry sectors like e.g. marine, refinery and petrochemistry, oil and gas pipelines or of drinking water and appearing by hot gases and combustion products in steel and concrete constructions. There are only some examples chosen. The corrosion phenomena are still a huge astonishment because of some costly repair processes and because of large production losses. The corrosion control systems existing by now help to avoid or to minimize these losses but the question still is, if the existing control system can be working better or longer. If yes, what a key can optimize the corrosion protection depending on the sector’s requirements.


Author(s):  
Paula Stigler Granados ◽  
Zacariah L. Hildenbrand ◽  
Claudia Mata ◽  
Sabrina Habib ◽  
Misty Martin ◽  
...  

The expansion of unconventional oil and gas development (UD) across the US continues to be at the center of debates regarding safety to health and the environment. This study evaluated the water quality of private water wells in the Eagle Ford Shale within the context of community members perception. Community members (n=75) were surveyed regarding health status and perceptions of drinking water quality. Water samples (n=19) were collected from private wells and tested for a variety of water quality parameters. Of the private wells sampled, 8 had exceedences of MCLs for drinking water standards. Geospatial analysis showed the majority of well owners who did have exceedances self-reported their health status as poor. Surveys showed that the majority of respondents received their water from a municipal source and were significantly more distrustful of their water source than of those on private wells. The data also showed a high number of people self-reporting health problems without a healthcare provider’s diagnosis. Attitudes and perceptions of water quality play an important role in the overall perceived health status of community members in high fracking regions, stressing the importance of transparency and communication by the UD industry.


2020 ◽  
Vol 6 (3) ◽  
Author(s):  
William A. Horn ◽  
Joshua D. Beard

The Michigan Department of Environment, Great Lakes, and Energy (“EGLE”), formerly the Michigan Department of Environmental Quality, is in the process of seeking primary enforcement responsibility from the United States Environmental Protection Agency (“EPA”) for its Underground Injection Control (“UIC”) program for Class II wells pursuant to Part C of the Safe Drinking Water Act (“SDWA”).


2016 ◽  
Vol 56 ◽  
pp. 7-13 ◽  
Author(s):  
Wesley Braide ◽  
Judith Nwachukwu ◽  
Samuel A. Adeleye ◽  
Emmanuel Egbadon

This study evaluates the effects of gas flaring on the physico-chemical and microbiological characteristics of water sources at Egbema, Imo State, Nigeria. Surface and ground water samples from the area were compared with samples from Ihiagwa Autonomous Community in Owerri West, a non-gas flared community. Both water sources were then compared with WHO standards for drinking water. The results revealed that water sources from the gas flared area have high levels of temperature, total chlorine, nitrate, nitrites, sulphates, calcium, and zinc, chromium with a very acidic pH when compared with water from non-gas flared sources. Also, microbial load increased the farther the distance from the flare site. The human health imparts of the presence of heavy metals and microorganisms in drinking water had been reported. In conclusion, gas flaring can pollute water sources within oil and gas facilities, thereby making them unsuitable for human consumption. Oil and gas industries should therefore treat water within their areas of operations before discharged into water bodies in addition to other remediation measures as part of their social responsibility.


2021 ◽  
Vol 76 ◽  
pp. 102070
Author(s):  
Cassandra J. Clark ◽  
Joshua L. Warren ◽  
Nina Kadan-Lottick ◽  
Xiaomei Ma ◽  
Michelle L. Bell ◽  
...  

Absheron Economic Region 1Area: 3,29 thousand km2 . 2. Population: 551,800 people. 3. Administrative districts: Sumgait city, Absheron and Khizi districts. 4. Natural resources: sawdust, limestone, cements raw material, quartz, construction sand, balneological resources. 5. Main areas of the economy: Industrial and agrarian-industrial complex, tourism. 6. Industrial areas: oil and gas extraction, petrochemicals and chemistry, ferrous and non-ferrous metallurgy, energy, light and food industries. 7. Agrarian fields: livestock breeding, poultry farming, sheep breeding, vegetable growing, gardening, vine growing, flowering and dry subtropical fruits. Olive, saffron, pistachio and other products are grown. 8. Areas of service: Construction, transport, communication, tourism and so on. 9. It is the only economic region with no domestic drinking water. The economic region is provided by drinking water and water pipes from the Samur and Kura rivers.


Sign in / Sign up

Export Citation Format

Share Document