Antigenic response of whey proteins and genetic variants of β-lactoglobulin — the effect of proteolysis and processing

2000 ◽  
Vol 10 (10) ◽  
pp. 699-711 ◽  
Author(s):  
Cecilie Svenning ◽  
Jorund Brynhildsvold ◽  
Tone Molland ◽  
Thor Langsrud ◽  
Gerd Elisabeth Vegarud
Foods ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2409
Author(s):  
Nan Gai ◽  
Therese Uniacke-Lowe ◽  
Jonathan O’Regan ◽  
Hope Faulkner ◽  
Alan L. Kelly

Milk protein comprises caseins (CNs) and whey proteins, each of which has different genetic variants. Several studies have reported the frequencies of these genetic variants and the effects of variants on milk physicochemical properties and functionality. For example, the C variant and the BC haplotype of αS1-casein (αS1-CN), β-casein (β-CN) B and A1 variants, and κ-casein (κ-CN) B variant, are favourable for rennet coagulation, as well as the B variant of β-lactoglobulin (β-lg). κ-CN is reported to be the only protein influencing acid gel formation, with the AA variant contributing to a firmer acid curd. For heat stability, κ-CN B variant improves the heat resistance of milk at natural pH, and the order of heat stability between phenotypes is BB > AB > AA. The A2 variant of β-CN is more efficient in emulsion formation, but the emulsion stability is lower than the A1 and B variants. Foaming properties of milk with β-lg variant B are better than A, but the differences between β-CN A1 and A2 variants are controversial. Genetic variants of milk proteins also influence milk yield, composition, quality and processability; thus, study of such relationships offers guidance for the selection of targeted genetic variants.


2018 ◽  
Vol 86 (1) ◽  
pp. 88-93 ◽  
Author(s):  
Raquel F.S. Raimondo ◽  
Juliana S.P. Ferrão ◽  
Samantha I. Miyashiro ◽  
Priscila T. Ferreira ◽  
João Paulo E. Saut ◽  
...  

AbstractThe bovine whey consists of more than 200 different types of proteins, of which β-lactoglobulin, α-lactalbumin, serum albumin, immunoglobulins and lactoferrin predominate. However, their concentrations are not stable due to the existence of protein dynamics during a transition from colostrum secretion to mature milk. To evaluate the dynamics of whey proteins of Jersey cows during a colostral phase and first month of lactation and an influence of the number of lactations, 268 milk samples from 135 Jersey cows were selected through a clinical evaluation. Whey was obtained by rennet coagulation of the mammary secretion. The concentration of total proteins was determined by the biuret method and their fractions were identified by 12% dodecyl sulfate-polyacrylamide gel electrophoresis (12% SDS-PAGE). Maximum concentrations of all protein fractions were observed in the first 12 h of lactation, reducing over the course of the study. Modification of the protein predominance was also observed. The transition from colostrum secretion to milk occurred between 24 and 72 h postpartum. There was an influence of the number of lactations on the dynamics of whey proteins, indicating that multiparous cows had better immunological and nutritional quality when compared to primiparous cows.


2020 ◽  
Vol 2 (1) ◽  
pp. 52-68
Author(s):  
Mircea BOLOGA ◽  
Elvira VRABIE ◽  
Irina PALADII ◽  
Olga ILIASENCO ◽  
Tatiana STEPURINA ◽  
...  

Introduction. Whey is a by-product and an excellent source of proteins that is rather aggressive due to a large amount of organic substances it contains. The electro-activation of whey applied in the experiments is a wasteless method that allows the va-lorification of all whey components. β-lactoglobulin (β-Lg) makes up 50% of the whey proteins and 12% of the total protein content in milk. Material and methods. The recovery of β-Lg in protein-mineral concentrates (PMC) by electro-activation processing of different types of whey with different initial protein content was investigated in seven configurations. The recovery of protein fractions in the PMCs were analyzed via electrophoresis with sodium dodecyl sulfate (SDS-PAGE) and 15% non-denaturing polyacrylamide gel (PAAG).      Results. Whey electro-fractionation and the obtaining of PMCs with predetermined protein content, namely of β-Lg, were studied on three whey types, processed at different treatment regimens and in seven configurations. The proper management of electroactivation by varying the treatment regimens will allow the electro-fractionation of different types of dairy by-products. Conclusions. The maximum amount of β-Lg recovered in PMCs on electroactivation is  66-71% depending on the processed whey and on the treatment regimens. Obviously, the extraction of β-Lg from initially lower protein content shows a higher recovery degree of β-Lg. The registered temperatures allows formation of PMCs without thermal denaturation.


Foods ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 360 ◽  
Author(s):  
Chun-Min Ma ◽  
Xin-Huai Zhao

The non-covalent interactions between a commercial whey protein isolate (WPI) and two bioactive polyphenols galangin and genistein were studied at pH 6.8 via the multi-spectroscopic assays and molecular docking. When forming these WPI-polyphenol complexes, whey proteins had changed secondary structures while hydrophobic interaction was the major driving force. Detergent sodium dodecyl sulfate destroyed the hydrophobic interaction and thus decreased apparent binding constants of the WPI-polyphenol interactions. Urea led to hydrogen-bonds breakage and protein unfolding, and therefore increased apparent binding constants. Based on the measured apparent thermodynamic parameters like ΔH, ΔS, ΔG, and donor-acceptor distance, galangin with more planar stereochemical structure and random B-ring rotation showed higher affinity for WPI than genistein with location isomerism and twisted stereochemical structure. The molecular docking results disclosed that β-lactoglobulin of higher average hydrophobicity had better affinity for the two polyphenols than α-lactalbumin of lower average hydrophobicity while β-lactoglobulin possessed very similar binding sites to the two polyphenols. It is concluded that polyphenols might have different non-covalent interactions with food proteins, depending on the crucial polyphenol structures and protein hydrophobicity.


2014 ◽  
Vol 83 (1) ◽  
pp. 67-72 ◽  
Author(s):  
Lenka Ruprichová ◽  
Michaela Králová ◽  
Ivana Borkovcová ◽  
Lenka Vorlová ◽  
Iveta Bedáňová

Protein analysis is very important both in terms of milk protein allergy, and of milk and dairy product adulteration (β-lactoglobulin may be an important marker in the detection of milk adulteration). The aim of this study was to detect major whey proteins α-lactalbumin and β-lactoglobulin and their genetic variants by reversed-phase high-performance liquid chromatography. Milk samples from cows (n = 40), goats (n = 40) and sheep (n = 40) were collected at two farms and milk bars in the Czech Republic from April to June 2010. The concentration of α-lactalbumin was higher in goat’s milk (1.27 ± 0.05 g·l-1, P < 0.001) and cow’s milk (1.16 ± 0.02 g·l-1, P = 0.0037) compared to sheep’s milk (0.95 ± 0.06 g·l-1); however, concentration of α-lactalbumin in goat’s milk and cow’s milk did not differ significantly (P < 0.05). Goat’s milk contained less β-lactoglobulin (3.07 ± 0.08 g·l-1) compared to cow’s milk (4.10 ± 0.04 g·l-1, P < 0.001) or sheep’s milk (5.97 ± 0.24 g·l-1, P < 0.001). A highly significant positive correlation (r = 0.8686; P < 0.001) was found between fraction A and B of β-lactoglobulin in sheep’s milk, whereas in cow’s milk there was a negative correlation (r = -0.3010; P = 0.0296). This study summarizes actual information of the whey protein content in different types of milk which may be relevant in assessing their allergenic potential.


1996 ◽  
Vol 63 (3) ◽  
pp. 441-449 ◽  
Author(s):  
Milena Corredig ◽  
Douglas G. Dalgleish

SummaryThe heat-induced binding of whey proteins to milk fat globule membranes in whole milk was investigated by quantitative electrophoresis and laser scanning densitometry. Both α-lactalbumin and β-lactoglobulin bound to the surfaces of fat globules when milk was heated in a water bath in the temperature range 65–85 °C. The interaction behaviour of α-lactalbumin did not seem to change with temperature, and the total amount of protein bound was ∼ 0·2 mg/g fat contained in the cream. The quantity of βlactoglobulin interacting with the milk fat globules increased with temperature from 02 to 0·7 mg/g fat between 65° and 85 °C. Even in whole milk heated at batch pasteurization temperatures (60–65 °C), α-lactalbumin and β-lactoglobulin were found attached to the fat globules. The interactions of the whey proteins with intact fat globule membranes were also investigated in milk heated in an industrial system (a pilot scale UHT and high temperature short time module), and the results were compared with those from the laboratory treatment (simple batch heating). The binding of the whey proteins to fat globules differed between milk heated by UHT using indirect steam heating or direct steam injection (DSI). However, the surface load in milk treated by DSI was not comparable to that of milk treated by batch heating or indirect steam heating, because of the changes in fat globule size and membrane composition caused by the DSI process.


Author(s):  
Henk Bovenhuis

Several studies have shown milk protein genetic variants to be associated with manufacturing properties of milk. The main findings were that κ-casein genetic variants affect renneting time of milk and βlactoglobulin genetic variants are associated with casein number (reviewed by Grosclaude, 1988). There are reports also of associations between milk protein genetic variants and milk production traits. Results from these studies indicate that κ-casein genotypes are associated with protein content and βlactoglobulin genotypes are related to fat content (reviewed by Bovenhuis et al., 1992). Therefore, κ-casein and βlactoglobulin genotypes might be of value as selection criteria. The aim of the present study was to quantify the potential effects of selection for κ-casein and β-lactoglobulin genotypes by using stochastic simulation of a closed adult MOET nucleus breeding scheme.


Sign in / Sign up

Export Citation Format

Share Document