Numerical simulation of the aerodynamic characteristics of heavy-duty trucks through viaduct in crosswind

2014 ◽  
Vol 26 (3) ◽  
pp. 394-399 ◽  
Author(s):  
Xing-jun Hu ◽  
Peng Qin ◽  
Lei Liao ◽  
Peng Guo ◽  
Jing-yu Wang ◽  
...  
2011 ◽  
Vol 346 ◽  
pp. 477-482 ◽  
Author(s):  
Zhe Zhang ◽  
Ying Chao Zhang ◽  
Jie Li ◽  
Jia Wang

With the development of automotive technology and high-speed highway construction, the speed of the vehicles increase which cause the significant increase in the aerodynamic drag when road vehicles are moving. Thereby the power of the vehicles, fuel economy, operational stability and other properties are affected very seriously. Heavy-duty commercial vehicles as the most efficient way to transport goods on the highway are widely used, and the speed of the vehicles increases faster. Especially the demands for heavy-duty commercial vehicles are increasing in recent years. Reducing the aerodynamic drag by the analysis of external aerodynamic characteristics, improving the fuel economy and reducing energy consumption have become new research topics of heavy-duty commercial vehicles. To make the heavy-duty commercial vehicles meet the national standards of energy saving, a simplified heavy-duty commercial truck model was built in this paper. The numerical simulation of the vehicle was completed based on the theory of the aerodynamics. The aerodynamic characteristics were analyzed, according to the graphs of the pressure distribution, velocity distribution and flow visualization. To improve the aerodynamic characteristics of heavy-duty commercial vehicles, the main drag reduction measures are reducing the vortex of the cab and the container, the end of the container and the bottom of the container.


2014 ◽  
Vol 602-605 ◽  
pp. 689-692
Author(s):  
Zhe Zhang ◽  
Lin Lin Ren ◽  
Jie Li

The research program of crosswind aerodynamics was formulated with yaw model test of the relative motion principle for a domestic heavy duty truck. This approach was applied separately wind tunnel test and numerical simulation, to obtain six aerodynamic coefficients of the corresponding heavy duty truck model, and the numerical simulation method was proved to be true by comparative analysis. The conclusions of aerodynamic characteristics got from simulation could provide a useful reference to reduce the impact on crosswind handling stability and the fuel consumption of the heavy duty truck.


2012 ◽  
Vol 209-211 ◽  
pp. 2089-2093 ◽  
Author(s):  
Xin Yu Wang ◽  
Xing Jun Hu ◽  
Lei Liao ◽  
Teng Fei Li

To reduce the aerodynamic drag coefficient of a heavy-duty commercial truck made in China, the aerodynamic characteristics of models with additional devices are researched by adopting numerical simulation and taking a certain made-in-china truck model as research object. The mechanism and the effect of reduction of drag coefficient are analyzed and the optimization of model is gained based on contrast to the drag coefficient of base model. The results indicate that the drag coefficient descends in the most degree after roof fairing of cab is applied and the shape of roof fairing has a great influence on drag. The grille and separator can reduce drag coefficient. The research results can reduce the drag coefficients and provide the theoretical references for energy conservation and emission reduction of heavy-duty trucks


2013 ◽  
Vol 365-366 ◽  
pp. 474-477
Author(s):  
Yu Kun Liu ◽  
Qi Fei Li ◽  
Guan Qun Li ◽  
Ao Liu ◽  
Xing Jun Hu

In order to reduce the aerodynamic drag of heavy-duty truck, four different shape and style of deflectors based on the original one are added. With the method of numerical simulation, the influence of deflector on the flow field of the cab and the vehicle was analyzed, and the mechanism of aerodynamic drag and the measures of drag reduction were discussed in the study. When driving at speed of 30m/s, the aerodynamic drag will be significantly reduced with the contributions of all the four deflectors. The optimal solution can reach a reduction about 14%.


2014 ◽  
Vol 1042 ◽  
pp. 188-193 ◽  
Author(s):  
Xing Jun Hu ◽  
Jing Chang

In order to analyze the impact of engine cabin parts on aerodynamic characteristics, the related parts are divided into three categories except the engine cooling components: front thin plates (average thickness of 2mm), bottom-suspension and interior panels. The aerodynamic drag coefficient (Cd) were obtained upon the combination schemes consisting of the three types of parts by numerical simulation. Results show that Cd by simulation is closer to the test value gained by the wind tunnel experiment when front thin plates were simplified to the two-dimensional interface with zero thickness. The error is only 5.23%. Meanwhile this scheme reduces grid numbers, thus decreasing the calculating time. As the front thin plates can guide the flow, there is no difference on the Cd values gained from the model with or without bottom-suspension or interior panels when the engine cabin contains the front thin plates; while only both bottom-suspension and interior panels are removed, the Cd value can be reduced when the cabin doesn’t contain the front thin plates.


2018 ◽  
Vol 56 (3) ◽  
pp. 370
Author(s):  
Nguyen Van Thang ◽  
Ha Tien Vinh ◽  
Bui Dinh Tri ◽  
Nguyen Duy Trong

This article carries out the numerical simulation of airflow over three dimensional car models using ANSYS Fluent software. The calculations have been performed by using realizable k-e turbulence model. The external airflow field of the simplified BMV M6 model with or without a wing is simulated. Several aerodynamic characteristics such as pressure distribution, velocity contours, velocity vectors, streamlines, turbulence kinetic energy and turbulence dissipation energy are analyzed in this study. The aerodynamic forces acting on the car model is calculated and compared with other authors.


Author(s):  
Jinwook Kim ◽  
Dohyung Lee ◽  
Junhee Han ◽  
Sangwoo Kim

The Vertical Axis Wind Turbine (VAWT) has advantages over Horizontal Axis Wind Turbine (HAWT) that it allows less chance to be degraded independent of wind direction and turbine can be operated even at the low wind speed. The objective of this study is to analyze aerodynamics of the VAWT airfoil and investigate the ideal shape of airfoil, more specifically cambers. The analysis of aerodynamic characteristics with various cambers has been performed using numerical simulation with CFD software. As the numerical simulation discloses local physical features around wind turbine, aerodynamic performance such as lift, drag and torque are computed for single airfoil rotation and multiple airfoil rotation cases. Through this study more effective airfoil shape is suggested based vortex-airfoil interaction studies.


2020 ◽  
Vol 14 (1) ◽  
pp. 910-922
Author(s):  
Zijian Guo ◽  
Tanghong Liu ◽  
Hassan Hemida ◽  
Zhengwei Chen ◽  
Hongkang Liu

Sign in / Sign up

Export Citation Format

Share Document