Numerical Simulation on Aerodynamic Characteristics of Heavy-Duty Commercial Vehicle

2011 ◽  
Vol 346 ◽  
pp. 477-482 ◽  
Author(s):  
Zhe Zhang ◽  
Ying Chao Zhang ◽  
Jie Li ◽  
Jia Wang

With the development of automotive technology and high-speed highway construction, the speed of the vehicles increase which cause the significant increase in the aerodynamic drag when road vehicles are moving. Thereby the power of the vehicles, fuel economy, operational stability and other properties are affected very seriously. Heavy-duty commercial vehicles as the most efficient way to transport goods on the highway are widely used, and the speed of the vehicles increases faster. Especially the demands for heavy-duty commercial vehicles are increasing in recent years. Reducing the aerodynamic drag by the analysis of external aerodynamic characteristics, improving the fuel economy and reducing energy consumption have become new research topics of heavy-duty commercial vehicles. To make the heavy-duty commercial vehicles meet the national standards of energy saving, a simplified heavy-duty commercial truck model was built in this paper. The numerical simulation of the vehicle was completed based on the theory of the aerodynamics. The aerodynamic characteristics were analyzed, according to the graphs of the pressure distribution, velocity distribution and flow visualization. To improve the aerodynamic characteristics of heavy-duty commercial vehicles, the main drag reduction measures are reducing the vortex of the cab and the container, the end of the container and the bottom of the container.

2012 ◽  
Vol 209-211 ◽  
pp. 2089-2093 ◽  
Author(s):  
Xin Yu Wang ◽  
Xing Jun Hu ◽  
Lei Liao ◽  
Teng Fei Li

To reduce the aerodynamic drag coefficient of a heavy-duty commercial truck made in China, the aerodynamic characteristics of models with additional devices are researched by adopting numerical simulation and taking a certain made-in-china truck model as research object. The mechanism and the effect of reduction of drag coefficient are analyzed and the optimization of model is gained based on contrast to the drag coefficient of base model. The results indicate that the drag coefficient descends in the most degree after roof fairing of cab is applied and the shape of roof fairing has a great influence on drag. The grille and separator can reduce drag coefficient. The research results can reduce the drag coefficients and provide the theoretical references for energy conservation and emission reduction of heavy-duty trucks


Author(s):  
John Nuszkowski ◽  
Harlan Smith ◽  
Michael McKinney ◽  
Nicholas McMahan ◽  
Benjamin Wilder ◽  
...  

Energy is a driving force for automotive applications. Reducing the energy demand of the vehicle is one method of increasing the fuel economy of a vehicle. Heavy-duty commercial vehicles have large frontal areas that provide large amounts of aerodynamic drag at highway speeds. Reducing the aerodynamic drag lowers the engine demand and therefore increases the fuel economy of the vehicle. This study tested the fuel economy and the front air velocity of a 10.7 m box truck trailing another box truck by distances of 3.1 times the truck length, 4.7 times the truck length, and 6.3 times the truck length at a highway speed of 28 m/s. The distance of 6.3 times the vehicle length was considered ‘safe’ for trailing another vehicle, whereas the distances of 3.1 times the truck length and 4.7 times the truck length were not considered safe by the United States Fire Administration. The results showed significant reductions in the air velocity in front of the trailing vehicle of 8.5%, 6.5%, and 3.8% for trailing distances of 3.1 times the vehicle length, 4.7 times the vehicle length, and 6.3 times the vehicle length respectively. The fuel economy of the trailing truck increased significantly by 7.4–8.0%, 8.2–9.0%, and 6.5%–7.7%, for trailing distances of 3.1 times the vehicle length, 4.7 times the vehicle length, and 6.3 times the vehicle length respectively. Based on a road load analysis, these fuel economy improvements indicated a reduction in the drag coefficient of the trailing vehicle of 8–10%. Therefore, a box truck trailing another box truck at a safe distance results in a reduction in the aerodynamics drag and a significant increase in the fuel economy.


2013 ◽  
Vol 365-366 ◽  
pp. 474-477
Author(s):  
Yu Kun Liu ◽  
Qi Fei Li ◽  
Guan Qun Li ◽  
Ao Liu ◽  
Xing Jun Hu

In order to reduce the aerodynamic drag of heavy-duty truck, four different shape and style of deflectors based on the original one are added. With the method of numerical simulation, the influence of deflector on the flow field of the cab and the vehicle was analyzed, and the mechanism of aerodynamic drag and the measures of drag reduction were discussed in the study. When driving at speed of 30m/s, the aerodynamic drag will be significantly reduced with the contributions of all the four deflectors. The optimal solution can reach a reduction about 14%.


2014 ◽  
Vol 1042 ◽  
pp. 188-193 ◽  
Author(s):  
Xing Jun Hu ◽  
Jing Chang

In order to analyze the impact of engine cabin parts on aerodynamic characteristics, the related parts are divided into three categories except the engine cooling components: front thin plates (average thickness of 2mm), bottom-suspension and interior panels. The aerodynamic drag coefficient (Cd) were obtained upon the combination schemes consisting of the three types of parts by numerical simulation. Results show that Cd by simulation is closer to the test value gained by the wind tunnel experiment when front thin plates were simplified to the two-dimensional interface with zero thickness. The error is only 5.23%. Meanwhile this scheme reduces grid numbers, thus decreasing the calculating time. As the front thin plates can guide the flow, there is no difference on the Cd values gained from the model with or without bottom-suspension or interior panels when the engine cabin contains the front thin plates; while only both bottom-suspension and interior panels are removed, the Cd value can be reduced when the cabin doesn’t contain the front thin plates.


2014 ◽  
Vol 26 (3) ◽  
pp. 394-399 ◽  
Author(s):  
Xing-jun Hu ◽  
Peng Qin ◽  
Lei Liao ◽  
Peng Guo ◽  
Jing-yu Wang ◽  
...  

Author(s):  
Yeongbin Lee ◽  
Minho Kwak ◽  
Kyu Hong Kim ◽  
Dong-Ho Lee

In this study, the aerodynamic characteristics of pantograph system according to the pantograph cover configurations for high speed train were investigated by wind tunnel test. Wind tunnel tests were conducted in the velocity range of 20∼70m/s with scaled experimental pantograph models. The experimental models were 1/4 scaled simplified pantograph system which consists of a double upper arm and a single lower arm with a square cylinder shaped panhead. The experimental model of the pantograph cover is also 1/4 scaled and were made as 4 different configurations. It is laid on the ground plate which modeled on the real roof shape of the Korean high speed train. Using a load cell, the aerodynamic force such as a lift and a drag which were acting on pantograph system were measured and the aerodynamic effects according to the various configurations of pantograph covers were investigated. In addition, the total pressure distributions of the wake regions behind the panhead of the pantograph system were measured to investigate the variations of flow pattern. From the experimental test results, we checked that the flow patterns and the aerodynamic characteristics around the pantograph systems are varied as the pantograph cover configurations. In addition, it is also found that pantograph cover induced to decrease the aerodynamic drag and lift forces. Finally, we proposed the aerodynamic improvement of pantograph cover and pantograph system for high speed train.


2015 ◽  
Vol 62 (4) ◽  
pp. 451-476 ◽  
Author(s):  
Tomasz Janson ◽  
Janusz Piechna

Abstract This paper presents the results of numerical analysis of aerodynamic characteristics of a sports car equipped with movable aerodynamic elements. The effects of size, shape, position, angle of inclination of the moving flaps on the aerodynamic downforce and aerodynamic drag forces acting on the vehicle were investigated. The calculations were performed with the help of the ANSYS-Fluent CFD software. The transient flow of incompressible fluid around the car body with moving flaps, with modeled turbulence (model Spalart-Allmaras or SAS), was simulated. The paper presents examples of effective flap configuration, and the example of configuration which does not generate aerodynamic downforce. One compares the change in the forces generated at different angles of flap opening, pressure distribution, and visualization of streamlines around the body. There are shown the physical reasons for the observed abnormal characteristics of some flap configurations. The results of calculations are presented in the form of pressure contours, pathlines, and force changes in the function of the angle of flap rotation. There is also presented estimated practical suitability of particular flap configurations for controlling the high-speed car stability and performance.


Author(s):  
Heet Patel

Abstract: Traditional vehicles are designed to bring out the best performance, good fuel economy, fewer emissions, and good high-speed stability. In this process of designing a vehicle, the underbody geometry of a car plays a vital role and is often neglected because of its complicated design bits. Though the presence of uneven surfaces causes the layers of air to separate resulting in generating turbulence. This report is about designing an active rear diffuser of a car. The rear diffuser is an aerodynamic device that is installed in the end part of the underbody of a car. Diffuser now a day is quite a common aerodynamic device that is used in performance cars. The main moto of attaching a diffuser is to reduce the wake produced behind the car and help the streamlines to converge better. The prime focus of this study is to design an active rear diffuser that will not only help in providing great high-speed stability and aerodynamic efficiency but will also use the aerodynamic forces adversely to help the car stop faster and on its track. This is made possible first by understanding the effects of diffuser angle on the aerodynamic forces acting on the car. Further, to actually transform the computational values into a working model, an electronic circuit is designed which mimics the exact movement of the diffuser according to the speed and other driving conditions. Keywords: Adaptive, diffuser, automobile, aerodynamic, aerodynamic Drag, aerodynamic Lift


Author(s):  
K P Garry

The aerodynamic characteristics of commercial vehicles have been of interest to researchers for many years, primarily with a view to reducing drag and consequently improving fuel efficiency. Despite developments in the design of low drag vehicles proprietary devices in various forms remain the most effective method of reducing drag on the majority of vehicles in current use. The relative effectiveness of these devices is discussed in relation to the variety of vehicle geometries to which they are fitted and performance assessments are made, particularly with reference to the need for crosswind efficiency. A general summary of potential aerodynamic developments is given, emphasizing the concept of matching the flowfield of cab and container to obtain optimum interference. The effectiveness of cab–container gap seals and trailer side skirts, both intended to reduce drag under crosswind conditions, is also discussed. All such developments are taken in the context of existing commercial and legal constraints likely to influence their impact on the next generation of commercial vehicles.


Sign in / Sign up

Export Citation Format

Share Document