Changes in Olsen P in Relation to P Balance in Contrasting Agricultural Soils

Pedosphere ◽  
2016 ◽  
Vol 26 (5) ◽  
pp. 636-642 ◽  
Author(s):  
Isabel DÍAZ ◽  
José TORRENT
Keyword(s):  
Olsen P ◽  
2020 ◽  
Author(s):  
Nyamdavaa Mongol

<p><strong>The effects of soil drying and rewetting history on phosphorus solubilisation and growth of maize (Zea mays) under contrasting agricultural soils in China</strong></p><p>Nyamdavaa Mongol<sup>1,2</sup>, Jianbo Shen<sup>2</sup>, Philip M. Haygarth<sup>1</sup></p><p> </p><p><sup>1</sup>Lancaster Environmental Centre, Lancaster University, Lancaster, LA1 4YW, United Kingdom.</p><p><sup>2</sup>Department of Plant Nutrition, China Agriculture University, Key Laboratory of Plant-Soil Interactions, Beijing 100193, PR China</p><p> </p><p><strong>Abstract</strong></p><p>This paper tested the hypothesis that agricultural soils with a recent history of drying and rewetting (DRW) can trigger P solubilisation in the rhizosphere and a subsequent growth response of maize (Zea mays).  Specifically, it aimed at investigating a possible delayed effect of soil DRW stresses by studying P solubilisation in the rhizosphere, plant P acquisition and performance, and root growth, all under the previous history of series of DRW events, combined with different types of agricultural soils of varied texture and pH.  The soils were collected from four different agricultural regions of China, Shandong, Chongqing, Heilongjiang and Beijing, treated with four varying cycles of DRW events prior to the experiment, to raise levels of soil biotic and abiotic activities and potential development of maize growth. A controlled small pot experiment was conducted to establish the Olsen P in the soil, maize shoot P concentrations, root morphology and other rhizosphere parameters, for the duration of 43 days after planting.   The results show a positive relationship between plant biomass, plant P concentration, and Olsen P. The effect was most clearly demonstrated by growth of plants and their biological performance in the rhizosphere, as the plants responded better in the soil with a DRW background than a soil that did not have a history of DRW in the past.  However, the soluble P concentration and plant growth response varied depending on soil types and P application rates, and the most positive was under Haplic Phaeozems soil from Heilongjiang, leading to an acceptance of hypothesis.  </p><p> </p>


Soil Research ◽  
2013 ◽  
Vol 51 (5) ◽  
pp. 427 ◽  
Author(s):  
R. J. Dodd ◽  
R. W. McDowell ◽  
L. M. Condron

Long-term application of phosphorus (P) fertilisers to agricultural soils can lead to in the accumulation of P in soil. Determining the rate of decline in soil P following the cessation of P fertiliser inputs is critical to evaluating the potential for reducing P loss to surface waters. The aim of this study was to use isotope exchange kinetics to investigate the rate of decline in soil P pools and the distribution of P within these pools in grazed grassland soils following a halt to P fertiliser application. Soils were sourced from three long-term grassland trials in New Zealand, two of which were managed as sheep-grazed pasture and one where the grass was regularly cut and removed. There was no significant change in total soil P over the duration of each trial between any of the treatments, although there was a significant decrease in total inorganic P on two of the sites accompanied by an increase in the organic P pool, suggesting that over time P was becoming occluded within organic matter, reducing the plant availability. An equation was generated using the soil-P concentration exchangeable within 1 min (E1 min) and P retention of the soil to predict the time it would take for the water-extractable P (WEP) concentration to decline to a target value protective of water quality. This was compared with a similar equation generated in the previous study, which used the initial Olsen-P concentration and P retention as a predictor. The use of E1 min in place of Olsen-P did not greatly improve the fit of the model, and we suggest that the use of Olsen-P is sufficient to predict the rate of decline in WEP. Conversely, pasture production data, available for one of the trial sites, suggest that E1 min may be a better predictor of dry matter yield than Olsen-P.


Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1483
Author(s):  
Thanh Tung Nguyen ◽  
Yuka Sasaki ◽  
Mitsuhiko Katahira ◽  
Dhirendranath Singh

Cow manure is a good source of phosphorus (P). Here, we investigated whether the amount of P fertilizer can be reduced when cow manure is applied to paddy soil based on growth, P uptake, yield, and soil P status evaluation. Treatments included unfertilized control (CK); manure plus chemical nitrogen (N), potassium (K), and P fertilizer (MNK P); MNK and 75% P (MNK ¾ P); MNK and 50% P (MNK ½ P); MNK and 25% P (MNK ¼ P); and MNK. Manure was applied at the rate of 10 t ha−1 in fresh weight base. The P fertilizer was applied at 34.9 kg P ha−1 as full dose. Treatment with MNK resulted in the same growth, P uptake, and yield as that with the P fertilizer. P uptake and yield did not respond to P input from chemical fertilizer owing to high soil Olsen P levels. Moreover, MNK could maintain soil Olsen P and total P. Manure application resulted in a positive partial P balance. These results suggest that manure application can cut P fertilizer requirements in P-rich soils, while maintaining soil P for optimal rice growth and yield. By using cow manure in rice production, farmers can conserve finite P resources.


2018 ◽  
Vol 64 (No. 5) ◽  
pp. 214-220 ◽  
Author(s):  
Sun Benhua ◽  
Cui Quanhong ◽  
Guo Yun ◽  
Yang Xueyun ◽  
Zhang Shulan ◽  
...  

Temporal changes in the concentrations of plant-available phosphorus (P) in soil (Olsen-P), total soil-P and P activation coefficient (the ratio of Olsen-P to residual-P (i.e. an approximation to total-P)) were measured in plots that received consistent inorganic nitrogen, phosphorus and potassium plus organic fertilizers annually. Maize and winter wheat crops were grown in rotation for 24 years. Olsen-P and P activation coefficient declined significantly in the earlier years (< 12 years) for treatments that did not include any P fertilizer, and increased over the same period for the P-fertilized treatments. The rates of change in the Olsen-P and P activation coefficient values were positively related to P balance. In the later years, the Olsen-P and P activation coefficient plateau values were positively related to the P balance.


2018 ◽  
Vol 64 (No. 5) ◽  
pp. 221-226
Author(s):  
Lv Zhenzhen ◽  
Liu Xiumei ◽  
Hou Hongqian ◽  
Liu Yiren ◽  
Ji Jianhua ◽  
...  

Rational soil phosphorus (P) management is significant to crop production and environment protection. Little information is available on soil Olsen-P balance and critical values in double-crop rice in China. The main aim of the study was to relate soil Olsen-P to apparent P balance and to determine Olsen-P critical value for early and late rice using data from a 29-year study (1984~2012) at the Jiangxi province. The results showed that Olsen-P decreased by 0.12~0.26 mg/kg/year without P addition and increased by 0.56~2.52 mg/kg/year with P fertilization. Olsen-P decreased by 0.30 mg/kg for CK and NK under an average deficit of 100 kg P/ha, and increased by an average of 9.10 mg/kg in treatments with organic manures and were 4.55 times higher than chemical fertilizers with 100 kg/ha of P surplus. The critical values for early and late rice were 22.70 and 22.67 mg/kg, respectively. The average  Olsen-P content is 90.89 mg/kg after 29-year application of chemical fertilizer and manures. Therefore, decreasing the amount of total P input and increasing the compost portion should be recommended to improve food production and protect environment in red paddy soils in south China.  


2016 ◽  
Vol 155 (3) ◽  
pp. 465-474 ◽  
Author(s):  
H. S. THIND ◽  
YADVINDER-SINGH ◽  
SANDEEP SHARMA ◽  
VARINDERPAL-SINGH ◽  
H. S. SRAN ◽  
...  

SUMMARYBagasse and rice husk are two important agro-industrial by-products that are used as fuel in the sugar and rice mill industries, thus producing large quantities of bagasse ash (BA; 0·05 of bagasse) and rice husk ash (0·20 of rice husk) as waste material. Applying BA and rice husk ash (RHA) to agricultural land improves yield, nutrient uptake and chemical fertility of soil, particularly with special reference to available phosphorus (P) and potassium (K). The present field experiment was conducted for 3 years to evaluate the P fertilizer value of these agro-industrial waste materials in a wheat–rice system (WRS). The experiment was laid out in a split-plot design with RHA and BA applied at 10 t/ha and including a no-amendment control as the main plot treatments and three levels of fertilizer P (0, 13 and 26 kg P/ha; designated P0, P13and P26, respectively) as sub-plot treatments to wheat in WRS. Application of fertilizer P increased the wheat grain yield up to P26in the un-amended control treatment. However, a significant response of wheat to fertilizer P was also observed up to P13in the presence of BA and RHA, thereby saving 50% of fertilizer P. Both RHA and BA increased wheat productivity by 12 and 16%, respectively, over the un-amended control. The subsequent rice crop also produced 14% higher paddy yield when the two ashes were applied along with P13to the previous wheat crop. The increases in grain yield were accompanied by significant increases in the uptake of P and K, and P content (Olsen P) in the soil. The application of recommended P (P26) in un-amended plots resulted in a negative P balance of 9·3 kg P/ha/year. On the other hand, the application of BA alone and RHA along with P13resulted in neutral/slightly positive P balance. A strong linear relationship (R2= 0·98) was observed between P balance and Olsen-P build up in the soil. It may be concluded that application of BA and RHA has the potential to increase system productivity and reduce the cost of inputs in terms of reduced application of fertilizer P to wheat and rice.


2019 ◽  
Vol 99 (4) ◽  
pp. 520-532
Author(s):  
Keith Reid ◽  
Kimberley D. Schneider

Phosphorus (P) loss to freshwater is a key driver of eutrophication, and understanding the scale and spatial distribution of potential P sources is a key pre-requisite for implementing policies for P management to minimize environmental impacts. Soil test P (STP) is a useful indicator of the accumulation of P in soils, but these data are not readily available for most agricultural land in Canada, so the cumulative P balance (P inputs as manure or fertilizer minus removal of P in crops) is calculated as a proxy for this value. Cumulative P balance is an important calculation within the indicator of risk of water contamination by P, so allocations of manure and fertilizer P to cropland were updated within the calculation of P balance, and for Ontario, data from 1961 to 1980 were added to account for P applications during that period. The STP concentrations were calculated from the resulting cumulative P balances. When compared with reported STP concentrations, the predicted concentrations showed a statistically significant regression at the national (R2 = 78%) and provincial scale (Ontario, R2 = 36%; Prince Edward Island, R2 = 36%; Manitoba, R2 = 72%; British Columbia, R2 = 40%). There was significant variation in the cumulative P balance across Canada, with the highest values corresponding with areas of high livestock density, whereas large zones of P deficit were detected across the Prairies.


2021 ◽  
Vol 33 (1) ◽  
Author(s):  
Zijian Xie ◽  
Fan Zhang ◽  
Chun Ye ◽  
Hao Wang ◽  
Weiwei Wei ◽  
...  

Abstract Background The soil P leaching change point (CP) has been widely used to evaluate soil P leaching risk. However, an automation calculation method for soil P leaching CP value, and an effective risk grading method performed for classifying soil P leaching risk evaluation have not been developed. Results This study optimized the calculation process for soil P leaching CP value with two different fitting models. Subsequently, based on the Python programming language, a computation tool named Soil Phosphorus Leaching Risk Calculator (SPOLERC) was developed for soil P leaching risk assessment. SPOLERC not only embedded the calculation process of the soil P leaching CP value, but also introduced the single factor index (SFI) method to grade the soil P leaching risk level. The relationships between the soil Olsen-P and leachable P were fitted by using SPOLERC in paddy soils and arid agricultural soils in the Xingkai Lake Basin, and the results showed that there was a good linear fitting relationship between the soil Olsen-P and leachable P; and the CP values were 59.63 and 35.35 mg Olsen-P kg−1 for paddy soils and arid agricultural soils, respectively. Additionally, 32.7, 21.8, and 3.64% of arid agricultural soil samples were at low risk, medium risk, and high risk of P leaching, and 40.6% of paddy soil samples were at low risk. Conclusions SPOLERC can accurately fit the split-line model relationship between the soil Olsen-P and leachable P, and greatly improved the calculation efficiency for the soil P leaching CP value. Additionally, the obtained CP value can be used for soil P leaching risk assessment, which could help recognize key area of soil P leaching.


1970 ◽  
Vol 19 (2) ◽  
pp. 181-187
Author(s):  
MR Islam ◽  
PK Saha ◽  
SK Zaman ◽  
MJ Uddin

Five phosphorus rates (0, 5, 10, 20 and 30 kg P/ha) were tested with four rice genotypes in Boro (BRRI dhan36, BRRI dhan45, EH1 and EH2) and T. Aman (BRRI dhan30, BRRI dhan49, EH1 and EH2) season. Phosphorus rates did not influence grain yield irrespective of varieties in T. Aman season while in Boro season P response was observed among the P rates. Application of P @ 10 kg/ha significantly increased the grain yield. But when P was applied @ 20 and 30 kg P/ha, the grain yield difference was not significant. The optimum and economic rate of P for T. Aman was 20 kg P/ha but in Boro rice the optimum and economic doses of P were 22 and 30 kg/ha, respectively. Hybrid entries (EH1 and EH2) used P more efficiently than inbred varieties. A negative P balance was observed up to 10 kg P/ha. Key words: Response; Phosphorus fertilizer; Inbred; Hybrid rice DOI: http://dx.doi.org/10.3329/dujbs.v19i2.8962 DUJBS 2010; 19(2): 181-187


Sign in / Sign up

Export Citation Format

Share Document