Effects of Current Frequency on the Microstructure and Wear Resistance of Ceramic Coatings Embedded with SiC Nano-particles Produced by Micro-arc Oxidation on AZ91D Magnesium Alloy

2010 ◽  
Vol 26 (10) ◽  
pp. 865-871 ◽  
Author(s):  
Yue Yang ◽  
Hua Wu
2011 ◽  
Vol 189-193 ◽  
pp. 1248-1252 ◽  
Author(s):  
Rui Ling Jia ◽  
Hong Ping Duan ◽  
Feng Guo ◽  
Xi Wei Zhai ◽  
Ya Hong Liang

Aluminium plate was cladded to magnesium alloy plate by using the explosive welding. The bonding morphology and composition of the explosive cladding plate was inspected by SEM and EDS. There is a wave bonding at the interface between aluminum plate and magnesium alloy plate. Then ceramic coatings were directly prepared on the surface of aluminum and magnesium alloy by micro-arc oxidation (MAO) in the same solution and at the same time. The microstructure and composition of MAO coatings were studies by SEM and EDS. The corrosion and wear resistance of MAO coatings on the two sides of the clad plate were investigated by salt spray tests and friction-wear test. The results show that the MAO coating on the Al surface consists of Al, O and Si elements, while MAO coating on the Mg surface consists of Mg, O and Si elements. The corrosion resistance of MAO coating on the Al surface was better than that on Mg surface of the explosive clad plate. The MAO coatings both on the Al surface and on the Mg surface can obviously improve the wear resistance of substrate.


2010 ◽  
Vol 146-147 ◽  
pp. 941-947
Author(s):  
Xi Chang Shi ◽  
Xiang Xiao ◽  
Bai Zhen Chen ◽  
Wei Shang

A novel process of micro-arc oxidation (MAO) on AZ91D magnesium alloy is investigated in a Na2SiO3-NaOH-montmorillonite-EDTA-acacia gum electrolyte solution. The morphologies, elements distribution, phase components of the coatings are characterized by SEM, EDS and XRD. And CHI600 electrochemistry corrosion workstation is employed to investigate the property of corrosion resistance of the coatings. Furthermore, the anti-corrosion behavior is analyzed immersed in 3.5 wt. % NaCl solution. The results reveal that the ceramic coatings have the relatively dense and uniform in thickness and the silicon element tends to present primarily in the outer region of the coatings. The XRD results indicate that the oxide films are mainly composed of Mg2SiO4 and MgAl2O4 phases. The immersion results show that the corrosion resistances of the ceramic coatings on AZ91D magnesium surface are better than the magnesium substrate.


Materials ◽  
2019 ◽  
Vol 12 (5) ◽  
pp. 799 ◽  
Author(s):  
Shaopeng Wang ◽  
Lian Zhou ◽  
Changjiu Li ◽  
Zhengxian Li ◽  
Hongzhan Li

Aluminium layers were coated onto the surface of pure titanium using hot-dip aluminising technology, and then the aluminium layers were in situ oxidised to form oxide ceramic coatings, using the micro-arc oxidation (MAO) technique. The microstructure and composition distribution of the hot-dip aluminium coatings and ceramic layers were studied by using scanning electron microscopy and energy-dispersive X-ray spectroscopy. The phase structure of the MAO layers was studied using X-ray diffraction. The surface composition of the MAO layer was studied by X-ray photoelectron spectroscopy. The wear resistance of the pure titanium substrate and the ceramic layers coated on its surface were evaluated by using the ball-on-disc wear method. Therefore, aluminising coatings, which consist of a diffusion layer and a pure aluminium layer, could be formed on pure titanium substrates using the hot-dip aluminising method. The MAO method enabled the in-situ oxidation of hot-dip pure aluminium layers, which subsequently led to the formation of ceramic layers. Moreover, the wear resistance values of the ceramic layers were significantly higher than that of the pure titanium substrate.


2013 ◽  
Vol 747-748 ◽  
pp. 178-183 ◽  
Author(s):  
Xue Jun Cui ◽  
Xiu Zhou Lin ◽  
Chun Hai Liu ◽  
Rui Song Yang ◽  
Ming Tian Li

Micro arc oxidation coatings were prepared on AZ91D magnesium alloy in order to evaluate the role of electrical parameters under different work mode. Taking HV hardness and pit corrosion time as investigation index, the optimum process parameters were obtained through orthogonal experiment method. The morphology of coating was observed by scanning electron microscopy (SEM). The results showed that the coatings with dense and few micro pores can be obtained under constant current and power mode, and this kind coatings are of good corrosion resistance and have HV micro-hardness compared with those under constant voltage mode.


2010 ◽  
Vol 105-106 ◽  
pp. 505-508 ◽  
Author(s):  
Zhen Dong Wu ◽  
Zhong Wen Yao ◽  
Fang Zhou Jia ◽  
Zhao Hua Jiang

The coatings containing zirconia were produced on LY12 Aluminium alloy by micro-arc oxidation in K2ZrF6 and NaH2PO2 solution. The composition, structure, hardness, friction and wear resistance and corrosion resistance of the coating were studied by XRD, SEM, EDS, ball-on-disk friction tester and electrochemical analyzer, respectively. The results show that coating was composed of m-ZrO2 and t-ZrO2. There were a large amount of Zr and O and a little Al, P and K in the coating. The thickness of coating prepared for 3h was 168μm and the maximum value of the hardness was up to 16.75GPa. The friction and wear resistance and corrosion resistance were improved, compared with the LY12 aluminium alloy substrate.


2007 ◽  
Vol 336-338 ◽  
pp. 2451-2453
Author(s):  
Shu Hua Li ◽  
Fu Chi Wang

The ceramic coating was formed by micro-plasma arc oxidation (MPAO) on AZ91D magnesium alloy. The surface and section morphology of coatings were observed using scanning electron microscopy. The phase composition of coatings was analyzed by X-ray diffraction. The method of salt fog experimental was carried out to proof-test performances of anti-corrosion of material. The results showed that the ceramic coating was composed by loose layer and compact layer. The coating surface has a large number of grains with various sizes. In addition, there is also a lot of pore in the loose layer, but the compact layer is tighter than the loose layer. Compact layer has a good combination with substrate magnesium alloy. The MPAO coating is mainly composed of silica oxide (MgAl2Si3O12 and β-Mg2SiO4 and (Mg4Al14) (Al4Si2)O20) and composite oxide of Mg and Al (δ-MgAl28O4). The performance of resistant corrosion of AZ91D coved by ceramic coating is higher than AZ91D magnesium alloy. The corrosion ratio of AZ91D alloy coved by ceramic coatings to AZ91D alloy is 1:8.61.


Sign in / Sign up

Export Citation Format

Share Document