Gas vent for a seal section of an electrical submersible pump assembly

2021 ◽  
Vol 2021 (4-5) ◽  
pp. 10
2019 ◽  
Vol 10 ◽  
pp. 82-86
Author(s):  
A.N. Ivanov ◽  
◽  
V.A. Bondarenko ◽  
M.M. Veliev ◽  
E.V. Kudin ◽  
...  

2021 ◽  
Vol 229 ◽  
pp. 108975
Author(s):  
R.H.R. Gutiérrez ◽  
U.A. Monteiro ◽  
C.O. Mendonça

2021 ◽  
Author(s):  
Mohd Hafizi Ariffin ◽  
Muhammad Idraki M Khalil ◽  
Abdullah M Razali ◽  
M Iman Mostaffa

Abstract Most of the oil fields in Sarawak has already producing more than 30 years. When the fields are this old, the team is most certainly facing a lot of problems with aging equipment and facilities. Furthermore, the initial stage of platform installation was not designed to accommodate a large space for an artificial lift system. Most of these fields were designed with gas lift compressors, but because of the space limitation, the platforms can only accommodate a limited gas lift compressor capacity due to space constraints. Furthermore, in recent years, some of the fields just started with their secondary recovery i.e. water, gas injection where the fluid gradient became heavier due to GOR drop or water cut increases. With these limitations and issues, the team needs to be creative in order to prolong the fields’ life with various artificial lift. In order to push the limits, the team begins to improve gas lift distribution among gas lifted wells in the field. This is the cheapest option. Network model recommends the best distribution for each gas lifted wells. Gas lifted wells performance highly dependent on fluid weight, compressor pressure, and reservoir pressure. The change of these parameters will impact the production of these wells. Rigorous and prudent data acquisitions are important to predict performance. Some fields are equipped with pressure downhole gauges, wellhead pressure transmitters, and compressor pressure transmitters. The data collected is continuous and good enough to be used for analysis. Instead of depending on compressor capacity, a high-pressure gas well is a good option for gas lift supply. The issues are to find gas well with enough pressure and sustainability. Usually, this was done by sacrificing several barrels of oil to extract the gas. Electrical Submersible Pump (ESP) is a more expensive option compared to a gas lift method. The reason is most of these fields are not designed to accommodate ESP electricity and space requirements. Some equipment needs to be improved before ESP installation. Because of this, the team were considering new technology such as Thru Tubing Electrical Submersible Pump (TTESP) for a cheaper option. With the study and implementation as per above, the fields able to prolong its production until the end of Production Sharing Contract (PSC). This proactive approach has maintained the fields’ production with The paper seeks to present on the challenges, root cause analysis and the lessons learned from the subsequent improvement activities. The lessons learned will be applicable to oil fields with similar situations to further improve the fields’ production.


2021 ◽  
Author(s):  
Abdullatif Al-Majdli ◽  
Carlos Caicedo Martinez ◽  
Sarah Al-Dughaishem

Abstract Oil production in North Kuwait (NK) asset highly relies on artificial lift systems. The predominant method of artificial lift in NK is electrical submersible pump (ESP). Corrosion is one of the major issues for wells equipped with ESP in NK field. Over 20% of the all pulled ESPs in 2019 and 2020 in NK field were due to corrosion of the completion or the ESP string. With an increase in ESP population in NK, a proactive corrosion mitigation is essential to reduce the number of ESP wells requiring workover. Historic data of the pulled ESPs in NK revealed that most of the corrosion cases were found in the tubing as opposed to the ESP components. Although there are multiple factors that can cause corrosion in NK, the driving force was identified to be the presence of CO2 (sweet corrosion). Corrosion rates have been enhanced by other factors such as stray current and galvanic couples. In this paper, multiple methods have been suggested to minimize and prevent the corrosion issue such as selecting the optimal completion and ESP metallurgy (ex. corrosion resistant alloy), installing internally glass reinforced epoxy lined carbon steel tubing, and installing a sacrificial anode whenever applicable.


Author(s):  
Diana Marcela Martinez Ricardo ◽  
German Efrain Castañeda Jiménez ◽  
Janito Vaqueiro Ferreira ◽  
Pablo Siqueira Meirelles

Various artificial lifting systems are used in the oil and gas industry. An example is the Electrical Submersible Pump (ESP). When the gas flow is high, ESPs usually fail prematurely because of a lack of information about the two-phase flow during pumping operations. Here, we develop models to estimate the gas flow in a two-phase mixture being pumped through an ESP. Using these models and experimental system response data, the pump operating point can be controlled. The models are based on nonparametric identification using a support vector machine learning algorithm. The learning machine’s hidden parameters are determined with a genetic algorithm. The results obtained with each model are validated and compared in terms of estimation error. The models are able to successfully identify the gas flow in the liquid-gas mixture transported by an ESP.


Author(s):  
Thuy Chu ◽  
Tan C. Nguyen ◽  
Jihoon Wang ◽  
Duc Vuong

AbstractElectrical Submersible Pump (ESP) is one of the major Artificial Lift methods that is reliable and effective for pumping high volume of fluids from wellbores. However, ESP is not recommended for applications with high gas liquid ratio. The presence of free gas inside the pump causes pump performance degradation which may lead to problems or even failure during operations. Thus, it is important to investigate effect of free gas on ESP performance under downhole conditions. At present, existing models or correlations are based on/verified with experimental data. This study is one of the first attempts to develop correlations for predicting two-phase gas–liquid pump performance under downhole conditions by using field data and laboratory data. Field data from three oil producing wells provided by Strata Production Company and Perdure Petroleum LLC. as well as experimental data obtained from experimental facility at Production and Drilling Research Project—New Mexico Tech were used in this study. Actual two-phase pump differential pressure per stage is obtained from experiments or estimated from field data and was normalized using pump performance curve. The values are compared to pump performance curve to study the relationships between pump performance and free gas percentage at pump intake. Correlations to predict ESP performance in two-phase flow under downhole and experimental conditions was derived from the results using regression technique. The correlation developed from field data presented in this study can be used to predict two-phase ESP performance under downhole conditions and under high gas fraction. The results from the experimental data confirm the reliability of the developed correlation using field data to predict two-phase ESP performance under downhole conditions. The developed correlation using the laboratory data predicts quite well the two-phase pump performance at the gas fraction of less than 15% while it is no longer reliable when free gas fraction is more than 15%. The findings from this study will help operating companies as well as ESP manufacturers to operate ESPs within the recommended range under downhole conditions. However, it is recommended to use the proposed correlation on reservoirs with conditions similar to those of the three presented wells.


Sign in / Sign up

Export Citation Format

Share Document