192 POSTER Effect of retinoic acid on prostate cancer cells in vitro

2005 ◽  
Vol 3 (2) ◽  
pp. 55
Endocrinology ◽  
2003 ◽  
Vol 144 (8) ◽  
pp. 3423-3432 ◽  
Author(s):  
C. Spitzweg ◽  
I. V. Scholz ◽  
E. R. Bergert ◽  
D. J. Tindall ◽  
C. Y. F. Young ◽  
...  

Abstract We reported recently the induction of androgen-dependent iodide uptake activity in the human prostatic adenocarcinoma cell line LNCaP using a prostate-specific antigen (PSA) promoter-directed expression of the sodium iodide symporter (NIS) gene. This offers the potential to treat prostate cancer with radioiodine. In the current study, we examined the regulation of PSA promoter-directed NIS expression and therapeutic effectiveness of 131I in LNCaP cells by all-trans-retinoic acid (atRA). For this purpose, NIS mRNA and protein expression levels in the NIS-transfected LNCaP cell line NP-1 were examined by Northern and Western blot analysis following incubation with atRA (10 −9 to 10−6m) in the presence of 10−9m mibolerone (mib). In addition, NIS functional activity was measured by iodide uptake assay, and in vitro cytotoxicity of 131I was examined by in vitro clonogenic assay. Following incubation with atRA, NIS mRNA levels in NP-1 cells were stimulated 3-fold in a concentration-dependent manner, whereas NIS protein levels increased 2.3-fold and iodide accumulation was stimulated 1.45-fold. This stimulatory effect of atRA, which has been shown to be retinoic acid receptor mediated, was completely blocked by the pure androgen receptor antagonist casodex (10−6m), indicating that it is androgen receptor dependent. The selective killing effect of 131I in NP-1 cells was 50% in NP-1 cells incubated with 10−9m mib. This was increased to 90% in NP-1 cells treated with atRA (10−7m) plus 10−9m mib. In conclusion, treatment with atRA increases NIS expression levels and selective killing effect of 131I in prostate cancer cells stably expressing NIS under the control of the PSA promoter. Therefore atRA may be used to enhance the therapeutic response to radioiodine in prostate cancer cells following PSA promoter-directed NIS gene delivery.


Author(s):  
Denisa Baci ◽  
Antonino Bruno ◽  
Caterina Cascini ◽  
Matteo Gallazzi ◽  
Lorenzo Mortara ◽  
...  

Abstract Background Prostate cancer (PCa) is a leading cause of cancer-related death in males worldwide. Exacerbated inflammation and angiogenesis have been largely demonstrated to contribute to PCa progression. Diverse naturally occurring compounds and dietary supplements are endowed with anti-oxidant, anti-inflammatory and anti-angiogenic activities, representing valid compounds to target the aberrant cytokine/chemokine production governing PCa progression and angiogenesis, in a chemopreventive setting. Using mass spectrometry analysis on serum samples of prostate cancer patients, we have previously found higher levels of carnitines in non-cancer individuals, suggesting a protective role. Here we investigated the ability of Acetyl-L-carnitine (ALCAR) to interfere with key functional properties of prostate cancer progression and angiogenesis in vitro and in vivo and identified target molecules modulated by ALCAR. Methods The chemopreventive/angiopreventive activities ALCAR were investigated in vitro on four different prostate cancer (PCa) cell lines (PC-3, DU-145, LNCaP, 22Rv1) and a benign prostatic hyperplasia (BPH) cell line. The effects of ALCAR on the induction of apoptosis and cell cycle arrest were investigated by flow cytometry (FC). Functional analysis of cell adhesion, migration and invasion (Boyden chambers) were performed. ALCAR modulation of surface antigen receptor (chemokines) and intracellular cytokine production was assessed by FC. The release of pro-angiogenic factors was detected by a multiplex immunoassay. The effects of ALCAR on PCa cell growth in vivo was investigated using tumour xenografts. Results We found that ALCAR reduces cell proliferation, induces apoptosis, hinders the production of pro inflammatory cytokines (TNF-α and IFN-γ) and of chemokines CCL2, CXCL12 and receptor CXCR4 involved in the chemotactic axis and impairs the adhesion, migration and invasion capabilities of PCa and BPH cells in vitro. ALCAR exerts angiopreventive activities on PCa by reducing production/release of pro angiogenic factors (VEGF, CXCL8, CCL2, angiogenin) and metalloprotease MMP-9. Exposure of endothelial cells to conditioned media from PCa cells, pre-treated with ALCAR, inhibited the expression of CXCR4, CXCR1, CXCR2 and CCR2 compared to those from untreated cells. Oral administration (drinking water) of ALCAR to mice xenografted with two different PCa cell lines, resulted in reduced tumour cell growth in vivo. Conclusions Our results highlight the capability of ALCAR to down-modulate growth, adhesion, migration and invasion of prostate cancer cells, by reducing the production of several crucial chemokines, cytokines and MMP9. ALCAR is a widely diffused dietary supplements and our findings provide a rational for studying ALCAR as a possible molecule for chemoprevention approaches in subjects at high risk to develop prostate cancer. We propose ALCAR as a new possible “repurposed agent’ for cancer prevention and interception, similar to aspirin, metformin or beta-blockers.


2006 ◽  
Vol 99 (5) ◽  
pp. 1409-1419 ◽  
Author(s):  
Marc A. Thomas ◽  
Myles C. Hodgson ◽  
Susan D. Loermans ◽  
Joel Hooper ◽  
Raelene Endersby ◽  
...  

2017 ◽  
Vol 86 ◽  
pp. 492-501 ◽  
Author(s):  
Selami Demirci ◽  
Ayşegül Doğan ◽  
Neşe Başak Türkmen ◽  
Dilek Telci ◽  
Albert A. Rizvanov ◽  
...  

2018 ◽  
Vol 34 (5) ◽  
pp. 659-667 ◽  
Author(s):  
Abel Joël Yaya Gbaweng ◽  
Hadidjatou Daïrou ◽  
Stephane Zingué ◽  
Talla Emmanuel ◽  
Alembert Tiabou Tchinda ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document