Excelsanone, a new isoflavonoid from Erythrina excelsa (Fabaceae), with in vitro antioxidant and in vitro cytotoxic effects on prostate cancer cells lines

2018 ◽  
Vol 34 (5) ◽  
pp. 659-667 ◽  
Author(s):  
Abel Joël Yaya Gbaweng ◽  
Hadidjatou Daïrou ◽  
Stephane Zingué ◽  
Talla Emmanuel ◽  
Alembert Tiabou Tchinda ◽  
...  
2020 ◽  
Author(s):  
Christine Moore ◽  
Victoria Palau ◽  
Rashid Mahboob ◽  
Janet Lightner ◽  
William Stone ◽  
...  

Abstract Background: α-tocopherol (AT) and γ-tocotrienol (GT3) are vitamin E isoforms considered to have potential chemopreventive properties. AT has been widely studied in vitro and in clinical trials with mixed results. The latest clinical study (SELECT trial) tested AT in prostate cancer patients, determined that AT provided no benefit, and could promote cancer. Conversely, GT3 has shown antineoplastic properties in several in vitro studies, with no clinical studies published to date. GT3 causes apoptosis via upregulation of the JNK pathway; however, inhibition results in a partial block of cell death. We compared side by side the mechanistic differences in these cells in response to AT and GT3.Methods: The effects of GT3 and AT were studied on androgen sensitive LNCaP and androgen independent PC-3 prostate cancer cells. Their cytotoxic effects were analyzed via MTT and confirmed by metabolic assays measuring ATP. Cellular pathways were studied by immunoblot. Quantitative analysis and the determination of relationships between cell signaling events were analyzed for both agents tested. Non-cancerous prostate RWPE-1 cells were also included as a control. Results: The RAF/RAS/ERK pathway was significantly activated by GT3 in LNCaP and PC-3 cells but not by AT. This activation is essential for the apoptotic affect by GT3 as demonstrated the complete inhibition of apoptosis by MEK1 inhibitor U0126. Phospho-c-JUN was upregulated by GT3 but not AT. No changes were observed on AKT for either agent, and no release of cytochrome c into the cytoplasm was detected. Caspases 9 and 3 were efficiently activated by GT3 on both cell lines irrespective of androgen sensitivity, but not in cells dosed with AT. Cell viability of non-cancerous RWPE-1 cells was affected neither by GT3 nor AT. Conclusions: c-JUN is a recognized master regulator of apoptosis as shown previously in prostate cancer. However, the mechanism of action of GT3 in these cells also include a significant activation of ERK which is essential for the apoptotic effect of GT3. The activation of both, ERK and c-JUN, is required for apoptosis and may suggest a relevant step in ensuring circumvention of mechanisms of resistance related to the constitutive activation of MEK1.


2020 ◽  
Author(s):  
Christine Moore ◽  
Victoria Palau ◽  
Rashid Mahboob ◽  
Janet Lightner ◽  
William Stone ◽  
...  

Abstract Background: α-tocopherol (AT) and γ-tocotrienol (GT3) are vitamin E isoforms considered to have potential chemopreventive properties. AT has been widely studied in vitro and in clinical trials with mixed results. The latest clinical study (SELECT trial) tested AT in prostate cancer patients, determined that AT provided no benefit, and could promote cancer. Conversely, GT3 has shown antineoplastic properties in several in vitro studies, with no clinical studies published to date. GT3 causes apoptosis via upregulation of the JNK pathway; however, inhibition results in a partial block of cell death. We compared side by side the mechanistic differences in these cells in response to AT and GT3. Methods: The effects of GT3 and AT were studied on androgen sensitive LNCaP and androgen independent PC-3 prostate cancer cells. Their cytotoxic effects were analyzed via MTT and confirmed by metabolic assays. Cellular pathways were studied by immunoblot. Quantitative analysis and the determination of relationships between cell signaling events were analyzed for both agents tested. Non-cancerous prostate RWPE-1 cells were also included as a control. Results: The RAF/RAS/ERK pathway was significantly activated by GT3 in LNCaP and PC-3 cells but not by AT. This activation is essential for the apoptotic affect by GT3 as demonstrated the complete inhibition of apoptosis by MEK1 inhibitor U0126. Phospho-c-Jun was upregulated by GT3 but not AT. No changes were observed on AKT for either agent, and no release of cytochrome c into the cytoplasm was detected. Caspases 9 and 3 were efficiently activated by GT3 on both cell lines irrespective of androgen sensitivity, but not in cells dosed with AT. Cell viability of non-cancerous RWPE-1 cells was affected neither by GT3 nor AT. Conclusions: c-JUN is a recognized master regulator of apoptosis as shown previously in prostate cancer. However, the mechanism of action of GT3 in these cells also include a significant activation of ERK which is essential for the apoptotic effect of GT3. The activation of both, ERK and c-JUN, is required for apoptosis and may suggest a relevant step in ensuring circumvention of mechanisms of resistance related to the constitutive activation of MEK1.


Biologia ◽  
2020 ◽  
Vol 75 (11) ◽  
pp. 2053-2062
Author(s):  
Dieudonné Njamen ◽  
Berlise Y. Bakam ◽  
Jochen Rutz ◽  
Sebastian Maxeiner ◽  
Charline F. Awounfack ◽  
...  

2019 ◽  
Author(s):  
Christine Moore ◽  
Victoria Palau ◽  
Rashid Mahboob ◽  
Janet Lightner ◽  
William Stone ◽  
...  

Abstract Background: α-tocopherol (AT) and γ-tocotrienol (GT3) are vitamin E isoforms considered to have potential chemopreventive properties. AT has been widely studied in vitro and in clinical trials with mixed results. The latest clinical study (SELECT trial) tested AT in prostate cancer patients, determined that AT provided no benefit, and could promote cancer. Conversely, GT3 has shown antineoplastic properties in several in vitro studies, with no clinical studies published to date. GT3 causes apoptosis via upregulation of the JNK pathway; however, inhibition results in a partial block of cell death. We compared side by side the mechanistic differences in these cells in response to AT and GT3. Methods: The effects of GT3 and AT were studied on androgen sensitive LNCaP and androgen independent PC-3 prostate cancer cells. Their cytotoxic effects were analyzed via MTT and confirmed by metabolic assays. Cellular pathways were studied by immunoblot. Quantitative analysis and the determination of relationships between cell signaling events were analyzed for both agents tested. Non-cancerous prostate RWPE-1 cells were also included as a control. Results: The RAF/RAS/ERK pathway was significantly activated by GT3 in LNCaP and PC-3 cells but not by AT. This activation is essential for the apoptotic affect by GT3 as demonstrated the complete inhibition of apoptosis by MEK1 inhibitor U0126. Phospho-c-Jun was upregulated by GT3 but not AT. No changes were observed on AKT for either agent, and no release of cytochrome c into the cytoplasm was detected. Caspases 9 and 3 were efficiently activated by GT3 on both cell lines irrespective of androgen sensitivity, but not in cells dosed with AT. Cell viability of non-cancerous RWPE-1 cells was affected neither by GT3 nor AT. Conclusions: c-JUN is a recognized master regulator of apoptosis as shown previously in prostate cancer. However, the mechanism of action of GT3 in these cells also include a significant activation of ERK which is essential for the apoptotic effect of GT3. The activation of both, ERK and c-JUN, is required for apoptosis and may suggest a relevant step in ensuring circumvention of mechanisms of resistance related to the constitutive activation of MEK1.


Author(s):  
Denisa Baci ◽  
Antonino Bruno ◽  
Caterina Cascini ◽  
Matteo Gallazzi ◽  
Lorenzo Mortara ◽  
...  

Abstract Background Prostate cancer (PCa) is a leading cause of cancer-related death in males worldwide. Exacerbated inflammation and angiogenesis have been largely demonstrated to contribute to PCa progression. Diverse naturally occurring compounds and dietary supplements are endowed with anti-oxidant, anti-inflammatory and anti-angiogenic activities, representing valid compounds to target the aberrant cytokine/chemokine production governing PCa progression and angiogenesis, in a chemopreventive setting. Using mass spectrometry analysis on serum samples of prostate cancer patients, we have previously found higher levels of carnitines in non-cancer individuals, suggesting a protective role. Here we investigated the ability of Acetyl-L-carnitine (ALCAR) to interfere with key functional properties of prostate cancer progression and angiogenesis in vitro and in vivo and identified target molecules modulated by ALCAR. Methods The chemopreventive/angiopreventive activities ALCAR were investigated in vitro on four different prostate cancer (PCa) cell lines (PC-3, DU-145, LNCaP, 22Rv1) and a benign prostatic hyperplasia (BPH) cell line. The effects of ALCAR on the induction of apoptosis and cell cycle arrest were investigated by flow cytometry (FC). Functional analysis of cell adhesion, migration and invasion (Boyden chambers) were performed. ALCAR modulation of surface antigen receptor (chemokines) and intracellular cytokine production was assessed by FC. The release of pro-angiogenic factors was detected by a multiplex immunoassay. The effects of ALCAR on PCa cell growth in vivo was investigated using tumour xenografts. Results We found that ALCAR reduces cell proliferation, induces apoptosis, hinders the production of pro inflammatory cytokines (TNF-α and IFN-γ) and of chemokines CCL2, CXCL12 and receptor CXCR4 involved in the chemotactic axis and impairs the adhesion, migration and invasion capabilities of PCa and BPH cells in vitro. ALCAR exerts angiopreventive activities on PCa by reducing production/release of pro angiogenic factors (VEGF, CXCL8, CCL2, angiogenin) and metalloprotease MMP-9. Exposure of endothelial cells to conditioned media from PCa cells, pre-treated with ALCAR, inhibited the expression of CXCR4, CXCR1, CXCR2 and CCR2 compared to those from untreated cells. Oral administration (drinking water) of ALCAR to mice xenografted with two different PCa cell lines, resulted in reduced tumour cell growth in vivo. Conclusions Our results highlight the capability of ALCAR to down-modulate growth, adhesion, migration and invasion of prostate cancer cells, by reducing the production of several crucial chemokines, cytokines and MMP9. ALCAR is a widely diffused dietary supplements and our findings provide a rational for studying ALCAR as a possible molecule for chemoprevention approaches in subjects at high risk to develop prostate cancer. We propose ALCAR as a new possible “repurposed agent’ for cancer prevention and interception, similar to aspirin, metformin or beta-blockers.


Sign in / Sign up

Export Citation Format

Share Document