scholarly journals 300. DNA Fusion Gene Vaccination, Delivered with or without In Vivo Electroporation – A Potent and Safe Strategy for Inducing Anti-Tumor Immune Responses in Prostate Cancer

2008 ◽  
Vol 16 ◽  
pp. S112-S113 ◽  
2013 ◽  
Vol 88 (4) ◽  
pp. 1924-1934 ◽  
Author(s):  
Q. Wang ◽  
W. Jiang ◽  
Y. Chen ◽  
P. Liu ◽  
C. Sheng ◽  
...  

Vaccine ◽  
2007 ◽  
Vol 25 (36) ◽  
pp. 6635-6645 ◽  
Author(s):  
Carlota Dobaño ◽  
Georg Widera ◽  
Dietmar Rabussay ◽  
Denise L. Doolan

2019 ◽  
Vol 37 (15_suppl) ◽  
pp. e14222-e14222
Author(s):  
Maloy Ghosh ◽  
Kavitha Iyer Rodrigues ◽  
Sunit Maity ◽  
Sanghamitra Bhattacharjee ◽  
Yogendra Manjunath ◽  
...  

e14222 Background: Therapeutic potential of innate immunity comprising Natural killer cell based targets are beginning to unravel the complexity of immune responses. NK cells recognize and induce cytotoxicity of wide range of target cells, such as, tumor cells without prior antigen sensitization. In this study, we have studied Lectin-like transcript 1 (LLT1), a member of the C-type lectin super family, is expressed on target cells and various immune cells. LLT1 isoform 1, is known to interact with CD161, a critical receptor on NK cells. CD161 is expressed on most of human NK cells, NK-T cells, γδ T cells and so on. Tumors exploit the CD161- LLT1 interaction to evade host defense mechanism (“DO NOT KILL” signal); indicating LLT1 as an attractive immunotherapeutic strategy. Methods: Prostate cancer cell lines and other tumor cell lines were used to evaluate novel anti LLT1 antibodies for therapeutic potential - IFNγ production assays and tumor cell death assays were carried out. In vivo efficacy of these antibodies were established using PC3 xenograft in humanized mouse model (HuNOG-EXL). Results: Human androgen independent prostate cancer cell line, PC3 was studied for LLT1 expression and interactions with immune cells, to understand role of LLT1 in metastatic castration resistant prostate cancer (mCRPC). Overexpression of LLT1 on tumor cells was influenced by cytokines and various TLRs. Inhibition of CD161-LLT1 interaction with novel anti LLT1 antibodies leads to IFNγ production and consequent NK cell mediated cytotoxicity – hall mark of anti-tumor responses. Disruption of LLT1 - CD161 innate immunity axis with anti LLT1 antibody releases the break on NK cell cytotoxicity and hence, established a new therapeutic option. PC3 xenograft on HuNOG mouse revealed in vivo efficacy of LLT1 antibody. Significant tumor growth reduction was observed with specific anti LLT1 antibodies alone and in combination with check point antibodies. Thus, synergistic tumor growth reduction was established by combinatorial application of anti LLT1 antibody and PD1/PDL1 axis inhibitors. Conclusions: PC3 xenograft study and other results point to therapeutic opportunities in metastatic castration resistant prostate cancer, a disease condition which needs improved patient outcomes. The ligation of CD161/LLT1 will serve as a new immuno-oncology pair regulating innate and adaptive immune responses; novel human antibodies against LLT1 described here will bring therapeutic benefit to patients in need.


2021 ◽  
Vol 22 (16) ◽  
pp. 8742
Author(s):  
Muzamil Y. Want ◽  
Ellen Karasik ◽  
Bryan Gillard ◽  
A. J. Robert McGray ◽  
Sebastiano Battaglia

Immunotherapy initially demonstrated promising results in prostate cancer (PCa), but the modest or negative results of many recent trials highlight the need to overcome the poor immunogenicity of this cancer. The design of effective therapies for PCa is challenged by the limited understanding of the interface between PCa cells and the immune system in mediating therapeutic resistance. Prompted by our recent observations that elevated WHSC1, a histone methyltransferase known to promote progression of numerous cancers, can silence antigen processing and presentation in PCa, we performed a single-cell analysis of the intratumoral immune dynamics following in vivo pharmacological inhibition of WHSC1 in mice grafted with TRAMP C2 cells. We observed an increase in cytotoxic T and NK cells accumulation and effector function, accompanied by a parallel remodeling of the myeloid compartment, as well as abundant shifts in key ligand–receptor signaling pathways highlighting changes in cell-to-cell communication driven by WHSC1 inhibition. This comprehensive profiling of both immune and molecular changes during the course of WHSC1 blockade deepens our fundamental understanding of how anti-tumor immune responses develop and can be enhanced therapeutically for PCa.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Yanan Qin ◽  
Hongxia Tian ◽  
Guanming Wang ◽  
Chen Lin ◽  
Yangqiu Li

The use of a DNA vaccine encoding the BCR/ABL fusion gene is thought to be a promising approach for patients with chronic myeloid leukemia (CML) to eradicate minimal residual disease after treatment with chemotherapy or targeted therapy. In this study, our strategy employs genetic technology to create a DNA vaccine encoding the BCR/ABL fusion and human interleukin-2 (hIL-2) genes. The successfully constructed plasmids BCR/ABL-pIRES-hIL-2, BCR/ABL-pIRES, and pIRES-hIL-2 were delivered intramuscularly to BALB/c mice at 14-day intervals for three cycles. The transcription and expression of the BCR/ABL and hIL-2 genes were found in the injected muscle tissues. The interferon-γ(IFN-γ) serum levels were increased, and the splenic CD4+/CD8+T cell ratio was significantly decreased in the BCR/ABL-pIRES-hIL-2-injected mice. Furthermore, specific antibodies against K562 cells could be detected by indirect immunofluorescence. These results indicate that a DNA vaccine containing BCR/ABL and hIL-2 together may elicit increased in vivo humoral and cellular immune responses in BALB/c mice.


2016 ◽  
Vol 3 (3) ◽  
pp. 1-80 ◽  
Author(s):  
Christian Ottensmeier ◽  
Megan Bowers ◽  
Debbie Hamid ◽  
Tom Maishman ◽  
Scott Regan ◽  
...  

BackgroundIn the UK almost 7000 people are diagnosed with leukaemia each year, but despite continuing advances in diagnosis and treatment with new drugs, such as the tyrosine kinase inhibitors, the majority of these patients will eventually die from their disease. Until quite recently, the only treatment to offer the possibility of long-term disease-free survival was allogeneic stem cell transplantation. However, this carries a substantial risk of mortality and is available to only a minority of patients.ObjectivesThe aim of the study was to test the hypothesis that molecular and clinical responses, induced by T lymphocytes (T cells), can be predicted by increases in the number of CD8+ (cluster of differentiation 8-positive) T cells specific for the vaccine-encoded T-cell epitopes. This project also aimed to build on the established programme of deoxyribonucleic acid (DNA) fusion-gene vaccination delivered by intramuscular injection, exploiting a unique experience with electroporation, to induce durable immune responses with the aim of controlling disease by precision attack of the tumour by CD8+ T cells.MethodA non-randomised, open-label, single-dose-level Phase II clinical trial in two patient groups [chronic myeloid leukaemia (CML) and acute myeloid leukaemia (AML)] on stable doses of imatinib. Human leucocyte antigen A2-positive (HLA A2+) patients were vaccinated with two DNA vaccines: (1) p.DOM–WT1-37 (epitope sequence: VLDFAPPGA); and (2) p.DOM–WT1-126 (epitope sequence: RMFPNAPYL). The HLA A2-negative patients formed an unvaccinated control group. The sample size for the HLA A2+ group was originally determined following Simon’s optimal Phase II trial design (Simon R. Optimal two-stage designs for phase II clinical trials.Control Clin Trials1989;10:1–10). This was changed to A’Hern’s single-stage design during the course of the trial (A’Hern RP. Sample size tables for single-stage phase II designs.Stat Med2001;20:859–66), which was endorsed by the trial’s independent oversight committees.ResultsThe study included 12 patients with CML who were vaccinated and nine patients with CML who were unvaccinated as the control group. Both the vaccines and the electroporation were safe, with no new or unexpected toxicities. The evaluation adverse events of special interest (heart, bone marrow, renal) did not reveal safety concerns. TwoBCR–ABL(breakpoint cluster region–Abelson murine leukaemia viral oncogene homolog 1) responses were observed, both of which were defined as a major response, with one in each group. Two Wilms’ tumour antigen 1 (WT1) molecular responses were observed in the vaccinated group and one was observed in the control group. At an immunological level, the vaccine performed as expected.ConclusionsThe study met its primary decision-making target with one major molecular response inBCR–ABLtranscript levels. Overall, the data showed, in this clinical setting, the immunogenicity and safety of the vaccine.LimitationsThe study did not complete recruitment and there were multiple hurdles that contributed to this failure. This is disappointing given the robust induction immune responses againstWT1T-cell responses in 7 out of 10 evaluable patients.Future workEvaluation of the p.DOM–WT1 vaccines in AML remains attractive clinically, but it is unlikely to be feasible at this time. Combination of the DNA vaccine approach with strategies to expand T-cell responses with immunomodulatory antibodies is in development.Funding detailsThis project was funded by the Efficacy and Mechanism Evaluation (EME) programme, a Medical Research Council (MRC) and National Institute for Health Research (NIHR) partnership, and Bloodwise.


Endocrinology ◽  
2014 ◽  
Vol 155 (9) ◽  
pp. 3262-3273 ◽  
Author(s):  
Jung-Sun Kim ◽  
Justin M. Roberts ◽  
William E. Bingman ◽  
Longjiang Shao ◽  
Jianghua Wang ◽  
...  

Abstract A number of preclinical studies have shown that the activation of the vitamin D receptor (VDR) reduces prostate cancer (PCa) cell and tumor growth. The majority of human PCas express a transmembrane protease serine 2 (TMPRSS2):erythroblast transformation-specific (ETS) fusion gene, but most preclinical studies have been performed in PCa models lacking TMPRSS2:ETS in part due to the limited availability of model systems expressing endogenous TMPRSS2:ETS. The level of the active metabolite of vitamin D, 1α,25-dihydroxyvitamin D3 (1,25D), is controlled in part by VDR-dependent induction of cytochrome P450, family 24, subfamily 1, polypeptide1 (CYP24A1), which metabolizes 1,25D to an inactive form. Because ETS factors can cooperate with VDR to induce rat CYP24A1, we tested whether TMPRSS2:ETS would cause aberrant induction of human CYP24A1 limiting the activity of VDR. In TMPRSS2:ETS positive VCaP cells, depletion of TMPRSS2:ETS substantially reduced 1,25D-mediated CYP24A1 induction. Artificial expression of the type VI+72 TMPRSS2:ETS isoform in LNCaP cells synergized with 1,25D to greatly increase CYP24A1 expression. Thus, one of the early effects of TMPRSS2:ETS in prostate cells is likely a reduction in intracellular 1,25D, which may lead to increased proliferation. Next, we tested the net effect of VDR action in TMPRSS2:ETS containing PCa tumors in vivo. Unlike previous animal studies performed on PCa tumors lacking TMPRSS2:ETS, EB1089 (seocalcitol) (a less calcemic analog of 1,25D) did not inhibit the growth of TMPRSS2:ETS containing VCaP tumors in vivo, suggesting that the presence of TMPRSS2:ETS may limit the growth inhibitory actions of VDR. Our findings suggest that patients with TMPRSS2:ETS negative tumors may be more responsive to VDR-mediated growth inhibition and that TMPRSS2:ETS status should be considered in future clinical trials.


2012 ◽  
Vol 61 (11) ◽  
pp. 2161-2170 ◽  
Author(s):  
Lindsey Chudley ◽  
Katy McCann ◽  
Ann Mander ◽  
Torunn Tjelle ◽  
Juan Campos-Perez ◽  
...  

2018 ◽  
Author(s):  
Natiely Silva Sales ◽  
Mariana de Oliveira Diniz ◽  
Jamile Ramos Silva ◽  
Mariângela de Oliveira Silva ◽  
Bruna F. M. M. Porchia ◽  
...  

Vaccine ◽  
2012 ◽  
Vol 30 (50) ◽  
pp. 7278-7285 ◽  
Author(s):  
Masaki Shoji ◽  
Kazufumi Katayama ◽  
Masashi Tachibana ◽  
Kyoko Tomita ◽  
Fuminori Sakurai ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document