Recent Advances on Optical Detection Methods and Techniques for Cell-based Microfluidic Systems

2010 ◽  
Vol 38 (9) ◽  
pp. 1357-1365 ◽  
Author(s):  
Dan-Qun HUO ◽  
Zhen LIU ◽  
Chang-Jun Hou ◽  
Jun YANG ◽  
Xiao-Gang LUO ◽  
...  
2018 ◽  
Vol 20 (5) ◽  
pp. 464-472 ◽  
Author(s):  
Vadim Stary ◽  
Vaclav Krivanek ◽  
Alexandr Stefek

2013 ◽  
Vol 845 ◽  
pp. 283-286 ◽  
Author(s):  
Malik Abdul Razzaq Al Saedi ◽  
Mohd Muhridza Yaacob

There is a high risk of insulation system dielectric instability when partial discharge (PD) occurs. Therefore, measurement and monitoring of PD is an important preventive tool to safeguard high-voltage equipment from wanton damage. PD can be detected using optical method to increase the detection threshold and to improve the performance of on-line measurement of PD in noise environment. The PD emitted energy as acoustic emission. We can use this emitted energy to detect PD signal. The best method to detect PD in power transformer is by using acoustic emission. Optical sensor has some advantages such as; high sensitivity, more accuracy small size. Furthermore, in on-site measurements and laboratory experiments, it isoptical methodthat gives very moderate signal attenuations. This paper reviews the available PD detection methods (involving high voltage equipment) such as; acoustic detection and optical detection. The advantages and disadvantages of each method have been explored and compared. The review suggests that optical detection techniques provide many advantages from the consideration of accuracy and suitability for the applications when compared to other techniques.


Agriculture ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1142
Author(s):  
Huan Song ◽  
Yongguang Hu ◽  
Yongzong Lu ◽  
Jizhang Wang ◽  
Qingming Pan ◽  
...  

Severe frost usually has adverse impacts on agricultural production, resulting in crop freeze injury, poor crop yield, and crop quality reduction. Timely and accurate detection of frost plays an important role in cold damage warnings, prevention, and control. Current frost detection methods mostly use physical properties such as light, electricity, and heat, or the judge and quantify using environmental factors such as temperature and wind speed. However, it is difficult to detect and accurately identify the frosting phenomenon in real time during field trials because of the complex environment, different plant types, and interference by many factors during observation. To provide an overview of the analytical tools for scientists, researchers, and product developers, a review and comparative analysis of the available literature on frost mechanisms, correlations, and characteristics are presented in this study. First, the mechanisms of the frost formation process, frost level, and the significance of detection, are introduced. Then, the methods and techniques used to measure frost on plant surfaces are synthetically classified and further compared. Moreover, the key points and difficulties are summarized and discussed. Finally, some constructive methods of frost detection are proposed to improve the frost detection process.


Biosensors ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 193
Author(s):  
Alanna V. Zubler ◽  
Jeong-Yeol Yoon

Plant stresses have been monitored using the imaging or spectrometry of plant leaves in the visible (red-green-blue or RGB), near-infrared (NIR), infrared (IR), and ultraviolet (UV) wavebands, often augmented by fluorescence imaging or fluorescence spectrometry. Imaging at multiple specific wavelengths (multi-spectral imaging) or across a wide range of wavelengths (hyperspectral imaging) can provide exceptional information on plant stress and subsequent diseases. Digital cameras, thermal cameras, and optical filters have become available at a low cost in recent years, while hyperspectral cameras have become increasingly more compact and portable. Furthermore, smartphone cameras have dramatically improved in quality, making them a viable option for rapid, on-site stress detection. Due to these developments in imaging technology, plant stresses can be monitored more easily using handheld and field-deployable methods. Recent advances in machine learning algorithms have allowed for images and spectra to be analyzed and classified in a fully automated and reproducible manner, without the need for complicated image or spectrum analysis methods. This review will highlight recent advances in portable (including smartphone-based) detection methods for biotic and abiotic stresses, discuss data processing and machine learning techniques that can produce results for stress identification and classification, and suggest future directions towards the successful translation of these methods into practical use.


Sensors ◽  
2019 ◽  
Vol 19 (18) ◽  
pp. 3995 ◽  
Author(s):  
Yaoguang Wei ◽  
Yisha Jiao ◽  
Dong An ◽  
Daoliang Li ◽  
Wenshu Li ◽  
...  

Dissolved oxygen is an important index to evaluate water quality, and its concentration is of great significance in industrial production, environmental monitoring, aquaculture, food production, and other fields. As its change is a continuous dynamic process, the dissolved oxygen concentration needs to be accurately measured in real time. In this paper, the principles, main applications, advantages, and disadvantages of iodometric titration, electrochemical detection, and optical detection, which are commonly used dissolved oxygen detection methods, are systematically analyzed and summarized. The detection mechanisms and materials of electrochemical and optical detection methods are examined and reviewed. Because external environmental factors readily cause interferences in dissolved oxygen detection, the traditional detection methods cannot adequately meet the accuracy, real-time, stability, and other measurement requirements; thus, it is urgent to use intelligent methods to make up for these deficiencies. This paper studies the application of intelligent technology in intelligent signal transfer processing, digital signal processing, and the real-time dynamic adaptive compensation and correction of dissolved oxygen sensors. The combined application of optical detection technology, new fluorescence-sensitive materials, and intelligent technology is the focus of future research on dissolved oxygen sensors.


2019 ◽  
pp. 253-287
Author(s):  
Sabiyah Akhter ◽  
Luqman Jameel Rather ◽  
Showkat Ali Ganie ◽  
Ovas Ahmad Dar ◽  
Qazi Parvaiz Hassan

2009 ◽  
Vol 30 (S1) ◽  
pp. S92-S100 ◽  
Author(s):  
Klaus B. Mogensen ◽  
Jörg P. Kutter

Sign in / Sign up

Export Citation Format

Share Document