Cessna Citation X simulation turbofan modelling: identification and identified model validation using simulated flight tests

2019 ◽  
Vol 123 (1262) ◽  
pp. 433-463 ◽  
Author(s):  
Ruxandra Mihaela Botez ◽  
Paul-Alexandre Bardela ◽  
Thomas Bournisien

ABSTRACTThe aviation industry relies on accurate models. These models are used to predict an aircraft system’s outputs, and thus allow an understanding of the parameters involved, which could lead to system improvements. This study focuses on the engine modelling of an aircraft, and on its experimental validation using the Cessna Citation X Research Aircraft Simulator designed by CAE Inc., equipped with a level D Flight Dynamics toolbox. Level D is the highest rank attributed by the Federal Aviation Administration FAA certification authorities for flight dynamics. The proposed model aims to predict the thrust and the fuel consumption for various altitudes, Mach numbers and throttle lever angles (TLA). Different generic static models, which correspond to their steady state, from the literature, were used in this study; however, most of them were validated under restricted hypotheses. An optimisation algorithm was used in order to tune the static model parameters with the set of identification flight test data. Another set of data was then used in order to validate the identified model. Furthermore, a dynamic model corresponding to the transient operations was identified. TLA steps, impulses and ramp perturbations were performed in order to identify the system response, and to validate system dynamic model with other flight tests than the identification tests.

Author(s):  
Олександр Дмитрович Донець ◽  
Володимир Олександрович Кудрявцев

Principal results of the computational and research work performed during development of a regional passenger aircraft to ensure its aerodynamic characteristics are given. When creating the An-148-100/An-158 family of aircraft, such level of the aircraft aerodynamic perfection was achieved, which ensured fulfillment of the specified requirements for their flight performance – maximum speed, cruising flight altitude and flight range with different payloads. The developed aerodynamic configuration made it possible to create a family of regional passenger high-wing planes with a flight speed of up to 870 km/h (true speed) (M = 0.8), which have no analogues in the world aviation industry. Developed for the An-148-100 / An- 158 aircraft, supercritical profiles of the new generation with a large maximum relative thickness formed the basis of the aerodynamic configuration of a high-speed  wing with moderate sweep. The aircraft lift-to-drag ratio in cruise flight is Kcruise = 15.8, which corresponds to the worldwide values. Developed aerodynamic configuration of the wing high-lift devices provides high bearing properties of the wing during take-off and landing stages, which allows to fully meet the requirements for the runway required length of the base airfields Lrun = 1485...1950 m. Developed algorithms are implemented in the electric remote control system and provide necessary standard characteristics of stability, controllability and flight dynamics in the main control mode. Selected margins of the aircraft’s own static stability and effectiveness of its controls ensure safe completion of the flight in standby control mode. The certification flight tests of the An-148-100/An-158 airplanes confirmed full compliance of their take-off and landing performance, as well as the stability, controllability and flight dynamics characteristics with the requirements of the Certification basis in both standard and in failure situations tested in flight tests. Necessary and sufficient amount of experimental work was conducted in the lowspeed  and high-speed wind tunnels of the ANTONOV SC and TsAGI to verify the aerodynamic and spin characteristics of the An-148-100/An-158 airplane models, which improved the aerodynamic configuration of the aircraft and its individual units and allowed to apply the work results in calculation of aircraft strength, as well as for development of their systems.


2013 ◽  
Vol 24 ◽  
pp. 1360036 ◽  
Author(s):  
YUJI YAMAKAWA ◽  
TAKANORI YAMAZAKI

In this paper, we concern with the dynamic behaviors of a high speed mass measurement system with conveyor belt (a checkweigher). The goal of this paper is to construct a simple model of the measurement system so as to duplicate a response of the system. The checkweigher with electromagnetic force compensation can be approximated by the combined spring-mass-damper systems as the physical model, and the equation of motion is derived. The model parameters (a damping coefficient and a spring constant) can be obtained from the experimental data for open-loop system. Finally, the validity of the proposed model can be confirmed by comparison of the simulation results with the realistic responses. The simple dynamic model obtained offers practical and useful information to examine control scheme.


Author(s):  
Guanghong Zhu ◽  
Yeping Xiong ◽  
Zigang Li ◽  
Ling Xiao ◽  
Ming Li ◽  
...  

As smart materials, magnetorheological elastomers (MREs) have been broadly applied in the field of intelligent structures and devices. In order to mathematically represent the dynamic behavior in a wide range of strain amplitude, excitation frequency and magnetic field; a nonlinear model with a fractional element was developed for MREs in a linear viscoelastic regime. The identification of model parameters was realized through fitting experimental data of dynamic moduli measured in shear mode, and the identified parameters exhibited good repeatability and consistency to reflect the rationality of this nonlinear dynamic model. Considering material elasticity and viscosity, the dependence of model parameters on strain amplitudes and magnetic fields was analyzed to interpret the dynamics of MREs. The fitted results displayed an excellent agreement with the experimental results on the dependence of dynamic moduli on strain amplitudes and magnetic fields. Using the predictor-corrector approach, predicted results on the stress-strain hysteresis loop were calculated based on identified parameters to further validate the proposed model by comparing with experimental results and predicted results of the revised Bouc-Wen model. This proposed model is expected to facilitate the dynamic analysis and simulation of MRE based vibration systems with a high precision accuracy.


2013 ◽  
Vol 347-350 ◽  
pp. 3890-3893 ◽  
Author(s):  
Ting Ting Yang ◽  
Ai Jun Li

An unmanned helicopter dynamic model identification method based on immune particle swarm optimization (PSO) algorithm is approved in this paper. In order to improve the search efficiency of PSO and avoid the premature convergence, the PSO algorithm is combined with the immune algorithm. The unmanned helicopter model parameters are coded as particle, the error of flight test and math simulation model is objective function, and the dynamic model of unmanned helicopter is identified. The simulation result shows that the method has high identification precision and can realistically reflect the dynamic characteristics.


2018 ◽  
Vol 46 (3) ◽  
pp. 174-219 ◽  
Author(s):  
Bin Li ◽  
Xiaobo Yang ◽  
James Yang ◽  
Yunqing Zhang ◽  
Zeyu Ma

ABSTRACT The tire model is essential for accurate and efficient vehicle dynamic simulation. In this article, an in-plane flexible ring tire model is proposed, in which the tire is composed of a rigid rim, a number of discretized lumped mass belt points, and numerous massless tread blocks attached on the belt. One set of tire model parameters is identified by approaching the predicted results with ADAMS® FTire virtual test results for one particular cleat test through the particle swarm method using MATLAB®. Based on the identified parameters, the tire model is further validated by comparing the predicted results with FTire for the static load-deflection tests and other cleat tests. Finally, several important aspects regarding the proposed model are discussed.


2019 ◽  
Vol XVI (2) ◽  
pp. 1-11
Author(s):  
Farrukh Jamal ◽  
Hesham Mohammed Reyad ◽  
Soha Othman Ahmed ◽  
Muhammad Akbar Ali Shah ◽  
Emrah Altun

A new three-parameter continuous model called the exponentiated half-logistic Lomax distribution is introduced in this paper. Basic mathematical properties for the proposed model were investigated which include raw and incomplete moments, skewness, kurtosis, generating functions, Rényi entropy, Lorenz, Bonferroni and Zenga curves, probability weighted moment, stress strength model, order statistics, and record statistics. The model parameters were estimated by using the maximum likelihood criterion and the behaviours of these estimates were examined by conducting a simulation study. The applicability of the new model is illustrated by applying it on a real data set.


Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1393
Author(s):  
Xiaochang Duan ◽  
Hongwei Yuan ◽  
Wei Tang ◽  
Jingjing He ◽  
Xuefei Guan

This study develops a general temperature-dependent stress–strain constitutive model for polymer-bonded composite materials, allowing for the prediction of deformation behaviors under tension and compression in the testing temperature range. Laboratory testing of the material specimens in uniaxial tension and compression at multiple temperatures ranging from −40 ∘C to 75 ∘C is performed. The testing data reveal that the stress–strain response can be divided into two general regimes, namely, a short elastic part followed by the plastic part; therefore, the Ramberg–Osgood relationship is proposed to build the stress–strain constitutive model at a single temperature. By correlating the model parameters with the corresponding temperature using a response surface, a general temperature-dependent stress–strain constitutive model is established. The effectiveness and accuracy of the proposed model are validated using several independent sets of testing data and third-party data. The performance of the proposed model is compared with an existing reference model. The validation and comparison results show that the proposed model has a lower number of parameters and yields smaller relative errors. The proposed constitutive model is further implemented as a user material routine in a finite element package. A simple structural example using the developed user material is presented and its accuracy is verified.


2020 ◽  
Vol 20 (4) ◽  
Author(s):  
Łukasz Smakosz ◽  
Ireneusz Kreja ◽  
Zbigniew Pozorski

Abstract The current report is devoted to the flexural analysis of a composite structural insulated panel (CSIP) with magnesium oxide board facings and expanded polystyrene (EPS) core, that was recently introduced to the building industry. An advanced nonlinear FE model was created in the ABAQUS environment, able to simulate the CSIP’s flexural behavior in great detail. An original custom code procedure was developed, which allowed to include material bimodularity to significantly improve the accuracy of computational results and failure mode predictions. Material model parameters describing the nonlinear range were identified in a joint analysis of laboratory tests and their numerical simulations performed on CSIP beams of three different lengths subjected to three- and four-point bending. The model was validated by confronting computational results with experimental results for natural scale panels; a good correlation between the two results proved that the proposed model could effectively support the CSIP design process.


Sign in / Sign up

Export Citation Format

Share Document