Monitoring Radiation, Energy, and Moisture Balance via Remote Sensing and Modeling with Land Surface Models

2016 ◽  
pp. 126-147
Author(s):  
Roger Barry ◽  
Peter Blanken
2018 ◽  
Vol 15 (15) ◽  
pp. 4731-4757 ◽  
Author(s):  
Ronny Meier ◽  
Edouard L. Davin ◽  
Quentin Lejeune ◽  
Mathias Hauser ◽  
Yan Li ◽  
...  

Abstract. Modeling studies have shown the importance of biogeophysical effects of deforestation on local climate conditions but have also highlighted the lack of agreement across different models. Recently, remote-sensing observations have been used to assess the contrast in albedo, evapotranspiration (ET), and land surface temperature (LST) between forest and nearby open land on a global scale. These observations provide an unprecedented opportunity to evaluate the ability of land surface models to simulate the biogeophysical effects of forests. Here, we evaluate the representation of the difference of forest minus open land (i.e., grassland and cropland) in albedo, ET, and LST in the Community Land Model version 4.5 (CLM4.5) using various remote-sensing and in situ data sources. To extract the local sensitivity to land cover, we analyze plant functional type level output from global CLM4.5 simulations, using a model configuration that attributes a separate soil column to each plant functional type. Using the separated soil column configuration, CLM4.5 is able to realistically reproduce the biogeophysical contrast between forest and open land in terms of albedo, daily mean LST, and daily maximum LST, while the effect on daily minimum LST is not well captured by the model. Furthermore, we identify that the ET contrast between forests and open land is underestimated in CLM4.5 compared to observation-based products and even reversed in sign for some regions, even when considering uncertainties in these products. We then show that these biases can be partly alleviated by modifying several model parameters, such as the root distribution, the formulation of plant water uptake, the light limitation of photosynthesis, and the maximum rate of carboxylation. Furthermore, the ET contrast between forest and open land needs to be better constrained by observations to foster convergence amongst different land surface models on the biogeophysical effects of forests. Overall, this study demonstrates the potential of comparing subgrid model output to local observations to improve current land surface models' ability to simulate land cover change effects, which is a promising approach to reduce uncertainties in future assessments of land use impacts on climate.


2014 ◽  
Vol 18 (12) ◽  
pp. 5345-5359 ◽  
Author(s):  
B. Müller ◽  
M. Bernhardt ◽  
K. Schulz

Abstract. The identification of catchment functional behavior with regards to water and energy balance is an important step during the parameterization of land surface models. An approach based on time series of thermal infrared (TIR) data from remote sensing is developed and investigated to identify land surface functioning as is represented in the temporal dynamics of land surface temperature (LST). For the mesoscale Attert catchment in midwestern Luxembourg, a time series of 28 TIR images from ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) was extracted and analyzed, applying a novel process chain. First, the application of mathematical–statistical pattern analysis techniques demonstrated a strong degree of pattern persistency in the data. Dominant LST patterns over a period of 12 years were then extracted by a principal component analysis. Component values of the two most dominant components could be related for each land surface pixel to land use data and geology, respectively. The application of a data condensation technique ("binary words") extracting distinct differences in the LST dynamics allowed the separation into landscape units that show similar behavior under radiation-driven conditions. It is further outlined that both information component values from principal component analysis (PCA), as well as the functional units from the binary words classification, will highly improve the conceptualization and parameterization of land surface models and the planning of observational networks within a catchment.


2020 ◽  
Author(s):  
Jan De Pue ◽  
José Miguel Barrios ◽  
Fabienne Maignan ◽  
Liyang Liu ◽  
Philippe Ciais ◽  
...  

<p>The annual phenological cycle is of key importance for the carbon and energy fluxes in terrestrial ecosystems. Although the processes controlling budburst and leaf senescence are fairly well known, the connection between plant phenology and the carbon fluxes remains a challenging aspect in land surface modelling (LSM). In this study, the modelling strategies of three well stablished LSM are compared. The LSM considered in this study were: ORCHIDEE, ISBA-A-gs and the model driving the LSA-SAF evapotranspiration product (https://landsaf.ipma.pt). The latter model does not simulate the carbon fluxes but focuses on the computation of evapotranspiration and energy fluxes.<br>The phenological cycle is simulated explicitly in the ORCHIDEE model, using empirical relations based on temperature sum, water availability, and other variables. In the ISBA-A-gs model, phenology and LAI development is fully photosynthesis-driven. The phenology in the LSA-SAF model is driven by remote sensing forcing variables, such as LAI observations. Alternatively, the assimilation of remote sensing LAI products is a convenient method to improve the simulated phenological cycle in land surface models. A dedicated module for this operation is available in ISBA-A-gs.<br>Simulations were performed over a wide range of climatological conditions and plant functional types. The results were then validated with in-situ measurements conducted at Fluxnet stations. In addition to the comparison between measured and modelled carbon fluxes, the validation in this study included the intra-annual variation in the simulated phenological cycle.</p>


2006 ◽  
Vol 3 (2) ◽  
pp. 229-241 ◽  
Author(s):  
J. Overgaard ◽  
D. Rosbjerg ◽  
M. B. Butts

Abstract. The purpose of this paper is to provide a review of the different types of energy-based land-surface models (LSMs) and discuss some of the new possibilities that will arise when energy-based LSMs are combined with distributed hydrological modelling. We choose to focus on energy-based approaches, because in comparison to the traditional potential evapotranspiration models, these approaches allow for a stronger link to remote sensing and atmospheric modelling. New opportunities for evaluation of distributed land-surface models through application of remote sensing are discussed in detail, and the difficulties inherent in various evaluation procedures are presented. Finally, the dynamic coupling of hydrological and atmospheric models is explored, and the perspectives of such efforts are discussed.


2018 ◽  
Vol 10 (3) ◽  
pp. 1265-1279 ◽  
Author(s):  
Gregory Duveiller ◽  
Giovanni Forzieri ◽  
Eddy Robertson ◽  
Wei Li ◽  
Goran Georgievski ◽  
...  

Abstract. Land use and land cover change (LULCC) alter the biophysical properties of the Earth's surface. The associated changes in vegetation cover can perturb the local surface energy balance, which in turn can affect the local climate. The sign and magnitude of this change in climate depends on the specific vegetation transition, its timing and its location, as well as on the background climate. Land surface models (LSMs) can be used to simulate such land–climate interactions and study their impact in past and future climates, but their capacity to model biophysical effects accurately across the globe remain unclear due to the complexity of the phenomena. Here we present a framework to evaluate the performance of such models with respect to a dedicated dataset derived from satellite remote sensing observations. Idealized simulations from four LSMs (JULES, ORCHIDEE, JSBACH and CLM) are combined with satellite observations to analyse the changes in radiative and turbulent fluxes caused by 15 specific vegetation cover transitions across geographic, seasonal and climatic gradients. The seasonal variation in net radiation associated with land cover change is the process that models capture best, whereas LSMs perform poorly when simulating spatial and climatic gradients of variation in latent, sensible and ground heat fluxes induced by land cover transitions. We expect that this analysis will help identify model limitations and prioritize efforts in model development as well as inform where consensus between model and observations is already met, ultimately helping to improve the robustness and consistency of model simulations to better inform land-based mitigation and adaptation policies. The dataset consisting of both harmonized model simulation and remote sensing estimations is available at https://doi.org/10.5281/zenodo.1182145.


2014 ◽  
Vol 11 (6) ◽  
pp. 7019-7052 ◽  
Author(s):  
B. Müller ◽  
M. Bernhardt ◽  
K. Schulz

Abstract. The identification of catchment functional behavior with regard to water and energy balance is an important step during the parameterization of land surface models. An approach based on time series of thermal infrared (TIR) data from remote sensing is developed and investigated to identify land surface functioning as is represented in the temporal dynamics of land surface temperature (LST). For the meso-scale Attert catchment in midwestern Luxembourg, a time series of 28 TIR images from ASTER was extracted and analyzed. The application mathematical-statistical pattern analysis techniques demonstrated a strong degree of pattern persistency in the data. Dominant LST patterns over a period of 12 years were extracted by a principal component analysis. Component values of the 2 most dominant components could be related for each land surface pixel to vegetation/land use data, and geology, respectively. A classification of the landscape by introducing "binary word", representing distinct differences in LST dynamics, allowed the separation into functional units under radiation driven conditions. It is further outlined that both information, component values from PCA as well as the functional units from "binary words" classification, will highly improve the conceptualization and parameterization of land surface models and the planning of observational networks within a catchment.


2021 ◽  
Vol 13 (21) ◽  
pp. 4460
Author(s):  
Dayang Wang ◽  
Dagang Wang ◽  
Chongxun Mo

Terrestrial evapotranspiration (ET) is a critical component of water and energy cycles, and improving global land evapotranspiration is one of the challenging works in the development of land surface models (LSMs). In this study, we apply a bias correction approach into the Community Land Model version 5.0 (CLM5) globally by utilizing the remote sensing-based ET dataset. Results reveal that the correction approach can alleviate both overestimation and underestimation of ET by CLM5 over the globe. The adjustment to overestimation is generally effective, whereas the effectiveness for underestimation is determined by the ET regime, namely water-limited or energy-limited. In the areas with abundant precipitation, the underestimation is effectively corrected by increasing ET without the water supply limit. In areas with rare precipitation, however, increasing ET is limited by water supply, which leads to an undesirable correction effect. Compared with the ET simulated by CLM5, the bias correction approach can reduce the global-averaged relative bias (RB) and the root mean square error (RMSE) by 51.8% and 65.9% against Global Land Evaporation Amsterdam Model (GLEAM) ET data, respectively. Meanwhile, the correlation coefficient (CC) can also be improved from 0.93 to 0.98. Continentally, the most substantial ET improvement occurs in Asia, with the RB and RMSE decreased by 69.7% (from 7.04% to 2.14%) and 70.2% (from 0.312 mm day−1 to 0.093 mm day−1, equivalent to from 114 mm year−1 to 34 mm year−1), and the CC increased from 0.92 to 0.99, respectively. Consequently, benefiting from the improvement of ET, the simulations of runoff and soil moisture are also improved over the globe and each of the six continents, and the improvement varies with region. This study demonstrates that the use of satellite-based ET products is beneficial to hydrological simulations in land surface models over the globe.


Sign in / Sign up

Export Citation Format

Share Document