Needs Assessment for a Targeted Health Promotion Campaign

2018 ◽  
Vol 13 (3) ◽  
pp. 596-604
Author(s):  
Greta Tam

ABSTRACTSince the first human A/H7N9 infection in Hong Kong, there has been an ongoing threat of human-to-human transmission, potentially causing a pandemic. Because there is no vaccine for A/H7N9, the individual preventive measures become all the more important for reducing transmission. However, due to the ongoing threat of numerous avian influenza viruses, the public may suffer from pandemic-media-fatigue. This study was done to assess the need for a targeted A/H7N9 health promotion campaign. Steven and Gillam’s framework using epidemiological, comparative, and corporate approaches was used to assess the need for a targeted A/H7N9 health promotion campaign.Local surveillance data showed that Hong Kong faces a double burden of increasing seasonal influenza activity and threat of an avian influenza pandemic. Experts warned of potential severity and difficulties in A/H7N9 control. In contrast, surveys showed that the Hong Kong public were suffering from pandemic-media-fatigue, lacked anxiety, had misconceptions, and were not vigilant in preventive practices. This was more evident in certain demographics. Content analysis showed that health promotion materials were not targeted or tailored in countries with human A/H7N9 cases. Targeted health promotion campaigns and framing the issue to increase public and media awareness are crucial in preventing the current pandemic-media-fatigue. (Disaster Med Public Health Preparedness.2019;13:596-604)

Author(s):  
Arnold S Monto ◽  
Keiji Fukuda

Abstract Seasonal influenza is an annual occurrence, but it is the threat of pandemics that produces universal concern. Recurring reports of avian influenza viruses severely affecting humans have served as constant reminders of the potential for another pandemic. Review of features of the 1918 influenza pandemic and subsequent ones helps in identifying areas where attention in planning is critical. Key among such issues are likely risk groups and which interventions to employ. Past pandemics have repeatedly underscored, for example, the vulnerability of groups such as pregnant women and taught other lessons valuable for future preparedness. While a fundamental difficulty in planning for the next pandemic remains their unpredictability and infrequency, this uncertainty can be mitigated, in part, by optimizing the handling of the much more predictable occurrence of seasonal influenza. Improvements in antivirals and novel vaccine formulations are critical in lessening the impact of both pandemic and seasonal influenza.


2002 ◽  
Vol 76 (2) ◽  
pp. 507-516 ◽  
Author(s):  
P. S. Chin ◽  
E. Hoffmann ◽  
R. Webby ◽  
R. G. Webster ◽  
Y. Guan ◽  
...  

ABSTRACT The A/teal/Hong Kong/W312/97 (H6N1) influenza virus and the human H5N1 and H9N2 influenza viruses possess similar genes encoding internal proteins, suggesting that H6N1 viruses could become novel human pathogens. The molecular epidemiology and evolution of H6 influenza viruses were characterized by antigenic and genetic analyses of 29 H6 influenza viruses isolated from 1975 to 1981 and 1997 to 2000. Two distinct groups were identified on the basis of their antigenic characteristics. Phylogenetic analysis revealed that all H6N1 viruses isolated from terrestrial poultry in 1999 and 2000 are closely related to A/teal/Hong Kong/W312/97 (H6N1), and the nucleotide sequences of these viruses and of A/Hong Kong/156/97 (H5N1) were more than 96% homologous. The hemagglutinin (HA) of the 1999 and 2000 terrestrial viruses does not have multiple basic amino acids at the site of cleavage of HA1 to HA2; however, a unique insertion of aspartic acid in HA1 between positions 144 and 145 (H3 numbering) was found. The neuraminidase of these terrestrial H6N1 viruses has a deletion of 19 amino acids characteristic of A/Hong Kong/156/97 (H5N1). Evolutionary analysis suggested that these H6N1 viruses coevolved with A/quail/Hong Kong/G1/97-like H9N2 viruses and became more adapted to terrestrial poultry. These terrestrial 1999 and 2000 A/teal/Hong Kong/W312/97 (H6N1)-like viruses, along with the H9N2 viruses, could have been involved in the genesis of the pathogenic H5N1 influenza viruses of 1997. The presence of H6N1 viruses in poultry markets in Hong Kong that possess seven of the eight genes of the A/Hong Kong/156/97 (H5N1) virus raises the following fundamental questions relevant to influenza pandemic preparedness: could the pathogenic H5N1 virus reemerge and could the H6N1 viruses directly cross the species barrier to mammals?


2015 ◽  
Vol 144 (8) ◽  
pp. 1579-1583
Author(s):  
J. Y. WONG ◽  
P. WU ◽  
E. H. Y. LAU ◽  
T. K. TSANG ◽  
V. J. FANG ◽  
...  

SUMMARYDuring the early stage of an epidemic, timely and reliable estimation of the severity of infections are important for predicting the impact that the influenza viruses will have in the population. We obtained age-specific deaths and hospitalizations for patients with laboratory-confirmed H1N1pdm09 infections from June 2009 to December 2009 in Hong Kong. We retrospectively obtained the real-time estimates of the hospitalization fatality risk (HFR), using crude estimation or allowing for right-censoring for final status in some patients. Models accounting for right-censoring performed better than models without adjustments. The risk of deaths in hospitalized patients with confirmed H1N1pdm09 increased with age. Reliable estimates of the HFR could be obtained before the peak of the first wave of H1N1pdm09 in young and middle-aged adults but after the peak in the elderly. In the next influenza pandemic, timely estimation of the HFR will contribute to risk assessment and disease control.


2000 ◽  
Vol 74 (3) ◽  
pp. 1443-1450 ◽  
Author(s):  
Jody K. Dybing ◽  
Stacey Schultz-Cherry ◽  
David E. Swayne ◽  
David L. Suarez ◽  
Michael L. Perdue

ABSTRACT In 1997, an outbreak of virulent H5N1 avian influenza virus occurred in poultry in Hong Kong (HK) and was linked to a direct transmission to humans. The factors associated with transmission of avian influenza virus to mammals are not fully understood, and the potential risk of other highly virulent avian influenza A viruses infecting and causing disease in mammals is not known. In this study, two avian and one human HK-origin H5N1 virus along with four additional highly pathogenic H5 avian influenza viruses were analyzed for their pathogenicity in 6- to 8-week-old BALB/c mice. Both the avian and human HK H5 influenza virus isolates caused severe disease in mice, characterized by induced hypothermia, clinical signs, rapid weight loss, and 75 to 100% mortality by 6 to 8 days postinfection. Three of the non-HK-origin isolates caused no detectable clinical signs. One isolate, A/tk/England/91 (H5N1), induced measurable disease, and all but one of the animals recovered. Infections resulted in mild to severe lesions in both the upper and lower respiratory tracts. Most consistently, the viruses caused necrosis in respiratory epithelium of the nasal cavity, trachea, bronchi, and bronchioles with accompanying inflammation. The most severe and widespread lesions were observed in the lungs of HK avian influenza virus-infected mice, while no lesions or only mild lesions were evident with A/ck/Scotland/59 (H5N1) and A/ck/Queretaro/95 (H5N2). The A/ck/Italy/97 (H5N2) and the A/tk/England/91 (H5N1) viruses exhibited intermediate pathogenicity, producing mild to moderate respiratory tract lesions. In addition, infection by the different isolates could be further distinguished by the mouse immune response. The non-HK-origin isolates all induced production of increased levels of active transforming growth factor β following infection, while the HK-origin isolates did not.


2015 ◽  
Vol 14 (1) ◽  
pp. 26-31 ◽  
Author(s):  
Sarder Mahmud Hossain ◽  
Sumaiya Zabin Eusufzai ◽  
Mustafa Mahbub Elahi ◽  
Nafij Bin Jamayet

Background: AI (Avian influenza) refers to a large group of different influenza viruses that primarily affect birds. On rare occasions, these bird viruses can infect other species, including pigs and humans. The vast majority of avian influenza viruses do not infect humans. Objective: To assess knowledge, attitude and practices related to AI among poultry workers. Methodology: A descriptive cross sectional study was designed to conduct in Bangladesh with a pretested modified questionnaire by face to face interview. Result: Current study revealed that nearly one third of the respondents were belonged to age group 26-30 years (39.17%) with the mean age 32.18±6.65 years. Majority of the respondents were male (70%). Nearly two thirds (80%) were owners of poultry farms. Half of them (49.67%) got information regarding AI by electronic media. Nearly one third of the study respondents (34.17%) replied that hand washing after poultry care and less than one third of the respondents (31.67%) said by using PPE (Personal Protective Equipment) during poultry care can prevent AI. Most of the participant said that they informed Rapid Response Team (RRT) for management of sick or dead poultry. More than half of the respondents (57.5) were using PPE. Association found between Socio-demographic variable (Age) and Knowledge on preventing avian influenza among the respondents where p-value=0.001. Conclusion: Knowledge and practices about AI disease among the poultry workers was moderate, but their attitudes were positive. Therefore, designing and implementing health educational programs and ensure proper training for poultry workers about AI to improve preventive practices should have the priority to eliminate the disease. DOI: http://dx.doi.org/10.3329/bjms.v14i1.21558 Bangladesh Journal of Medical Science Vol.14(1) 2015 p.26-31


1970 ◽  
Vol 25 (1) ◽  
pp. 1-8
Author(s):  
M Anwar Hossain ◽  
M Intakhar Ahmad ◽  
M Manjurul Karim

Bird flu, synonym of avian influenza (AI) caused by influenza A virus, become concern across the world for the possible incidence of the next human influenza pandemic. The latent danger of AI pandemic remains very real, though, the precise timing of occurrence and severity is uncertain. Each avian influenza type A (AIA) contains one of the 16 subtypes of haemagglutinin (HA) and 9 neuraminidases (NA) implicating theoretically 144 subtypes of AIA are possible in circulation, but only H1N1, H2N2 and H3N2 subtypes are documented for past pandemics in humans. In recent years H5N1, H7N3, H7N2, H7N7 and H9N2 are isolated from human samples, though H1N1 and H3N2 are still in circulation. Avian influenza viruses preferentially recognize receptor containing sialosugar chains terminating in sialic acid ?-2,3-galactose in bird, whereas, human preferentially contain ?-2,6-galactose subtype-receptor. To initiate a pandemic outbreak in human, the AIA viruses need alteration of receptor recognition specificity; and perfect match between HA and NA along with optimal cellular tropism. Cyclic nature of bird-flu emergence, and moreover, sporadic human incident reported around Asia and Europe in recent years anticipating a pandemic appearance of bird-flu in time to come. As we are on the edge of this alarming situation, AI prevention and containment can be considered under categories of surveillance, intervention, antiviral drugs, vaccination together with environment management issues.Keywords: Pandemic; Avian influenza; Genetic reassortment; Host specificity; Environment management  DOI: http://dx.doi.org/10.3329/bjm.v25i1.4847Bangladesh J Microbiol, Volume 25, Number 1, June 2008, pp 1-8


Pathogens ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 670 ◽  
Author(s):  
Huanan Li ◽  
Qian Li ◽  
Bo Li ◽  
Yang Guo ◽  
Jinchao Xing ◽  
...  

Since it firstly emerged in China in 2013, clade 2.3.4.4 H5N6 highly pathogenic avian influenza viruses (HPAIVs) has rapidly replaced predominant H5N1 to become the dominant H5 subtype in China, especially in ducks. Not only endemic in China, it also crossed the geographical barrier and emerged in South Korea, Japan, and Europe. Here, we analyzed the genetic properties of the clade 2.3.4.4 H5N6 HPAIVs with full genome sequences available online together with our own isolates. Phylogenetic analysis showed that clade 2.3.4.4 H5N6 HPAIVs continuously reassorted with local H5, H6, and H7N9/H9N2. Species analysis reveals that aquatic poultry and migratory birds became the dominant hosts of H5N6. Adaption to aquatic poultry might help clade 2.3.4.4 H5N6 better adapt to migratory birds, thus enabling it to become endemic in China. Besides, migratory birds might help clade 2.3.4.4 H5N6 transmit all over the world. Clade 2.3.4.4 H5N6 HPAIVs also showed a preference for α2,6-SA receptors when compared to other avian origin influenza viruses. Experiments in vitro and in vivo revealed that clade 2.3.4.4 H5N6 HPAIVs exhibited high replication efficiency in both avian and mammal cells, and it also showed high pathogenicity in both mice and chickens, demonstrating high risk to public health. Considering all the factors together, adaption to aquatic poultry and migratory birds helps clade 2.3.4.4 H5N6 overcome the geographical isolation, and it has potential to be the next influenza pandemic in the world, making it worthy of our attention.


2003 ◽  
Vol 77 (12) ◽  
pp. 6988-6994 ◽  
Author(s):  
K. S. Li ◽  
K. M. Xu ◽  
J. S. M. Peiris ◽  
L. L. M. Poon ◽  
K. Z. Yu ◽  
...  

ABSTRACT A current view of the emergence of pandemic influenza viruses envisages a gene flow from the aquatic avian reservoir to humans via reassortment in pigs, the hypothetical “mixing vessel.” Understanding arising from recent H5N1 influenza outbreaks in Hong Kong since 1997 and the isolation of avian H9N2 virus from humans raises alternative options for the emergence of a new pandemic virus. Here we report that H9N2 influenza viruses established in terrestrial poultry in southern China are transmitted back to domestic ducks, in which the viruses generate multiple reassortants. These novel H9N2 viruses are double or even triple reassortants that have amino acid signatures in their hemagglutinin, indicating their potential to directly infect humans. Some of them contain gene segments that are closely related to those of A/Hong Kong/156/97 (H5N1/97, H5N1) or A/Quail/Hong Kong/G1/97 (G1-like, H9N2). More importantly, some of their internal genes are closely related to those of novel H5N1 viruses isolated during the outbreak in Hong Kong in 2001. This study reveals a two-way transmission of influenza virus between terrestrial and aquatic birds that facilitates the generation of novel reassortant H9N2 influenza viruses. Such reassortants may directly or indirectly play a role in the emergence of the next pandemic virus.


2000 ◽  
Vol 74 (14) ◽  
pp. 6592-6599 ◽  
Author(s):  
Angela N. Cauthen ◽  
David E. Swayne ◽  
Stacey Schultz-Cherry ◽  
Michael L. Perdue ◽  
David L. Suarez

ABSTRACT Since the outbreak in humans of an H5N1 avian influenza virus in Hong Kong in 1997, poultry entering the live-bird markets of Hong Kong have been closely monitored for infection with avian influenza. In March 1999, this monitoring system detected geese that were serologically positive for H5N1 avian influenza virus, but the birds were marketed before they could be sampled for virus. However, viral isolates were obtained by swabbing the cages that housed the geese. These samples, known collectively as A/Environment/Hong Kong/437/99 (A/Env/HK/437/99), contained four viral isolates, which were compared to the 1997 H5N1 Hong Kong isolates. Analysis of A/Env/HK/437/99 viruses revealed that the four isolates are nearly identical genetically and are most closely related to A/Goose/Guangdong/1/96. These isolates and the 1997 H5N1 Hong Kong viruses encode common hemagglutinin (H5) genes that have identical hemagglutinin cleavage sites. Thus, the pathogenicity of the A/Env/HK/437/99 viruses was compared in chickens and in mice to evaluate the potential for disease outbreaks in poultry and humans. The A/Env/HK/437/99 isolates were highly pathogenic in chickens but caused a longer mean death time and had altered cell tropism compared to A/Hong Kong/156/97 (A/HK/156/97). Like A/HK/156/97, the A/Env/HK/437/99 viruses replicated in mice and remained localized to the respiratory tract. However, the A/Env/HK/437/99 isolates caused only mild pathological lesions in these tissues and no clinical signs of disease or death. As a measure of the immune response to these viruses, transforming growth factor β levels were determined in the serum of infected mice and showed elevated levels for the A/Env/HK/437/99 viruses compared to the A/HK/156/97 viruses. This study is the first to characterize the A/Env/HK/437/99 viruses in both avian and mammalian species, evaluating the H5 gene from the 1997 Hong Kong H5N1 isolates in a different genetic background. Our findings reveal that at least one of the avian influenza virus genes encoded by the 1997 H5N1 Hong Kong viruses continues to circulate in mainland China and that this gene is important for pathogenesis in chickens but is not the sole determinant of pathogenicity in mice. There is evidence that H9N2 viruses, which have internal genes in common with the 1997 H5N1 Hong Kong isolates, are still circulating in Hong Kong and China as well, providing a heterogeneous gene pool for viral reassortment. The implications of these findings for the potential for human disease are discussed.


Sign in / Sign up

Export Citation Format

Share Document