Bursting bubble aerosols

2011 ◽  
Vol 696 ◽  
pp. 5-44 ◽  
Author(s):  
H. Lhuissier ◽  
E. Villermaux

AbstractWe depict and analyse the complete evolution of an air bubble formed in a water bulk, from the time it emerges at the liquid surface, up to its fragmentation into dispersed drops. To this end, experiments describing the drainage of the bubble cap film, its puncture and the resulting bursting dynamics determining the aerosol formation are conducted on tapwater bubbles. We discover that the mechanism of marginal pinching at the bubble foot and associated convection motions in the bubble cap, known as marginal regeneration, both drive the bubble cap drainage rate, and are responsible for its puncture. The resulting original film thickness $h$ evolution law in time, supplemented with considerations about the nucleation of holes piercing the film together culminate in a determination of the cap film thickness at bursting ${h}_{b} \propto {R}^{2} / \mathscr{L}$, where $R$ is the bubble cap radius of curvature, and $\mathscr{L}$ a length which we determine. Subsequent to a hole nucleation event, the cap bursting dynamics conditions the resulting spray. The latter depends both on the bubble shape prescribed by $R/ a$, where $a$ is the capillary length based on gravity, and on ${h}_{b} $. The mean drop size $\langle d\rangle \ensuremath{\sim} {R}^{3/ 8} \hspace{0.167em} { h}_{b}^{5/ 8} $, the number of drops generated per bubble $N\ensuremath{\sim} \mathop{ (R/ a)}\nolimits ^{2} \mathop{ (R/ {h}_{b} )}\nolimits ^{7/ 8} $ and the drop size distribution $P(d)$ are derived, comparing well with measurements. Combined with known bubble production rates over the ocean, our findings offer an adjustable parameter-free prediction for the aerosol flux and spray structure caused by bubble bursting in this precise context.

2022 ◽  
Vol 119 (1) ◽  
pp. e2112924119
Author(s):  
Xinghua Jiang ◽  
Lucas Rotily ◽  
Emmanuel Villermaux ◽  
Xiaofei Wang

Tiny water drops produced from bubble bursting play a critical role in forming clouds, scattering sunlight, and transporting pathogens from water to the air. Bubbles burst by nucleating a hole at their cap foot and may produce jets or film drops. The latter originate from the fragmentation of liquid ligaments formed by the centripetal destabilization of the opening hole rim. They constitute a major fraction of the aerosols produced from bubbles with cap radius of curvature (R) > ∼0.4 × capillary length (a). However, our present understanding of the corresponding mechanisms does not explain the production of most submicron film drops, which represent the main number fraction of sea spray aerosols. In this study, we report observations showing that bursting bubbles with R < ∼0.4a are actually mainly responsible for submicron film drop production, through a mechanism involving the flapping shear instability of the cap with the outer environment. With this proposed pathway, the complex relations between bubble size and number of drops produced per bubble can be better explained, providing a fundamental framework for understanding the production flux of aerosols and the transfer of substances mediated by bubble bursting through the air–water interface and the sensitivity of the process to the nature of the environment.


Lubricants ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. 31 ◽  
Author(s):  
Hazim U. Jamali ◽  
Amjad Al-Hamood ◽  
Oday I. Abdullah ◽  
Adolfo Senatore ◽  
Josef Schlattmann

The principal factors that affect the characteristics of contact problem between cam and follower vary enormously during the operating cycle of this mechanism. This includes radius of curvature, surface velocities and applied load. It has been found over the last decades that the mechanism operates under an extremely thin film of lubricant. Any practical improvement in the level of film thickness that separates the contacted surfaces represents an essential step towards a satisfactory design of the system. In this paper a detailed numerical study is presented for the cam and follower (flat-faced) lubrication including the effect of introducing an axial modification (parabolic shape) of the cam depth on the levels of film thickness and pressure distribution. This is achieved based on a point contact model for a cam and flat-faced follower system. The results reveal that the cam form of modification has considerable consequences on the level of predicted film thickness and pressure distribution as well as surface deformation.


Measurements have been made of the friction, electrical resistance, and electrical capacity between rotating steel cylinders with their axes mutually at right angles. The lubricant was a plain hydrocarbon mineral oil. Nominally the surfaces come together at a single point and the apparatus is designed to ensure that this condition is maintained even if the cylinders wear. It is shown that hydrodynamic lubrication exists over a wide range of conditions. At loads of a few kilograms it persists even when the speed falls below 1 cm/s and at higher speeds (~ 100 cm/s) it is maintained even when the load becomes large enough to cause bulk plastic flow of hardened steel. Hitherto it has been considered that only boundary lubrication could occur under these extreme conditions. At very light loads classical hydrodynamic theory applies but as the load is increased a departure from classical theory occurs because the viscosity of the oil increases under the applied pressure. At heavier loads the pressures become large enough to cause appreciable elastic deformation of the surfaces and a state of elasto-hydrodynamic lubrication is achieved. Under elasto-hydrodynamic conditions the film thickness can be deduced from the measure­ments of electrical capacity. A simplified theory of elasto-hydrodynamic lubrication at point contacts is developed, and the measured values of film thickness are in fairly good agreement with those derived from the theory. However, the variations of film thick­ness with viscosity, speed and radius of curvature forecast by the theory differ significantly from those obtained experimentally. The values of the film thickness range from 2 x 10 -6 cm to more than 1 x 10 -4 cm. The results, over the whole range, conform to a regular pattern and there is no evidence of any disturbing influence of the surface molecular fields, even with the thinnest films.


2020 ◽  
Vol 72 (10) ◽  
pp. 1139-1145
Author(s):  
Mingyu Zhang ◽  
Jing Wang ◽  
Jinlei Cui ◽  
Peiran Yang

Purpose The purpose of this paper is to numerically study the variations of oil film pressure, thickness and temperature rise in the contact zone of plate-pin pair in silent chains. Design/methodology/approach A steady-state thermal elastohydrodynamic lubrication (EHL) model is built using a Ree–Eyring fluid. The contact between the plate and the pin is simplified as a narrow finite line contact, and the lubrication state is examined by varying the geometry and the plate speed. Findings With increase in the equivalent radius of curvature, the pressure peak and the central film thickness increase. Because the plate is very thin, the temperature rise can be neglected. Even when the influence of the rounded corner region is less, a proper design can beneficially increase the minimum film thickness at both edges of the plate. Under a low entraining speed, strong stress concentration results in close-zero film thickness at both edges of the plate. Originality/value This study reveals the EHL feature of the narrow finite line contact in plate-pin pairs for silent chains and will support the future works considering transient effect, surface features and wear.


Author(s):  
Mhunir B. Alamu ◽  
Barry J. Azzopardi ◽  
Gerrit P. van der Meulen ◽  
Valente Hernandez-Perez

The mechanism of atomization of part of the liquid film to form drops in annular two-phase flow is not entirely understood. It has been observed that drop creation only occurs when there are large disturbance waves present on the film interface. Woodmansee and Hanratty [1] observed that ripples on these waves were a precursor to drops. Though it has been reported that drops occur in bursts by Azzopardi [2], all previous drop size or concentration measurements have always been time integrated to simplify data analysis. Dynamic time averaged drop-size measurements are reported for the first time for annular two-phase flow. Experiments were carried out on a 19mm internal diameter vertical pipe with air and water as fluids. Spraytec, a laser diffraction-based, drop size measurement instrument, was used in the data acquisition. Simultaneous time-resolved measurements were made of: film thickness using conductance probes employing a pair of flush mounted rings as electrodes; and pressure gradient. The gas superficial velocity was 13–43 m/s at liquid superficial velocities of 0.05 and 0.15 m/s. Additional tests were carried out with the gas velocity at 14 m/s for liquid superficial velocities of 0.03–0.18 m/s. Though structures are not clearly visible in the signals acquired, they have been analyzed in amplitude and frequency space to yield Probability Density Function (PDF) and to identify the dominant frequency. Cross-correlation between two film thickness probes provides the wave velocities. Based on the signal analysis, links between film thickness, drop concentration and pressure drop have been identified.


2009 ◽  
Vol 640 ◽  
pp. 131-150 ◽  
Author(s):  
SHREYAS V. JALIKOP ◽  
ANNE JUEL

We study steep capillary-gravity waves that form at the interface between two stably stratified layers of immiscible liquids in a horizontally oscillating vessel. The oscillatory nature of the external forcing prevents the waves from overturning, and thus enables the development of steep waves at large forcing. They arise through a supercritical pitchfork bifurcation, characterized by the square root dependence of the height of the wave on the excess vibrational Froude number (W, square root of the ratio of vibrational to gravitational forces). At a critical valueWc, a transition to a linear variation inWis observed. It is accompanied by sharp qualitative changes in the harmonic content of the wave shape, so that trochoidal waves characterize the weakly nonlinear regime, but ‘finger’-like waves form forW≥Wc. In this strongly nonlinear regime, the wavelength is a function of the product of amplitude and frequency of forcing, whereas forW<Wc, the wavelength exhibits an explicit dependence on the frequency of forcing that is due to the effect of viscosity. Most significantly, the radius of curvature of the wave crests decreases monotonically withWto reach the capillary length forW=Wc, i.e. the lengthscale for which surface tension forces balance gravitational forces. ForW<Wc, gravitational restoring forces dominate, but forW≥Wc, the wave development is increasingly defined by localized surface tension effects.


1980 ◽  
Vol 102 (3) ◽  
pp. 706-710 ◽  
Author(s):  
N. K. Rizk ◽  
A. H. Lefebvre

The influence of initial liquid film thickness on mean drop size and drop-size distribution was examined using two specially designed airblast atomizers. Both were constructed to produce a flat liquid sheet across the centerline of a two-dimensional air duct with the liquid sheet exposed on both sides to high velocity air. In one case a thin film of uniform thickness was produced by injecting the liquid through a porous plate located just upstream of the atomizing edge. The film thickness, t, was then measured by a needle contact device. In the second design the fuel entered the air stream through a thin slot whose height could be adjusted accurately to vary and control the initial film thickness. Drop sizes were measured by the well-established light-scattering technique. From analysis of the processes involved, and from correlation of the experimental data, it was found that high values of liquid viscosity and liquid flow rate result in thicker films. It was also observed that thinner liquid films produce better atomization, according to the relationship, SMD ∝ t0.38.


2019 ◽  
Vol 94 (8) ◽  
pp. 1271-1277 ◽  
Author(s):  
I. G. Abd El-Sadek ◽  
W. A. Ramadan ◽  
M. Nawareg ◽  
A. S. El-Tawargy

1970 ◽  
Vol 92 (2) ◽  
pp. 359-362 ◽  
Author(s):  
A. Eshel

Some factors useful in overcoming excessive air gaps in foil bearings are investigated. Since the gaps of interest are small, the foil bearing equations are modified to include the effects of the molecular mean free path. It is shown that by small corners in the solid wall, one can reduce the air film thickness considerably. A change in curvature with continuous slope has also a marked effect on the film thickness. Theoretical prediction curves allowing the calculation of the air gap as a function of corner angle, change in radius of curvature, and the molecular mean free path are presented.


Sign in / Sign up

Export Citation Format

Share Document