Water waves over a variable bottom: a non-local formulation and conformal mappings

2012 ◽  
Vol 695 ◽  
pp. 288-309 ◽  
Author(s):  
A. S. Fokas ◽  
A. Nachbin

AbstractIn Ablowitz, Fokas & Musslimani (J. Fluid Mech., vol. 562, 2006, pp. 313–343) a novel formulation was proposed for water waves in three space dimensions. In the flat-bottom case, this formulation consists of the Bernoulli equation, as well as of a non-local equation. The variable-bottom case, which now involves two non-local equations, was outlined but not explored in the above paper. Here, the variable-bottom formulation is addressed in more detail. First, it is shown that in the weakly nonlinear, weakly dispersive regime, the above system of three equations can be reduced to a system of two equations. Second, by combining the novel non-local formulation of the above authors with conformal mappings, it is shown that in the two-dimensional case, it is possible to obtain a system of two equations without any asymptotic approximations. Furthermore, for the weakly nonlinear, weakly dispersive regime, the nonlinear equations are simpler than the equations obtained without conformal mappings, since they contain lower order derivatives for the terms involving the bottom variable.

2011 ◽  
Vol 689 ◽  
pp. 129-148 ◽  
Author(s):  
A. C. L. Ashton ◽  
A. S. Fokas

AbstractThe classical equations of irrotational water waves have recently been reformulated as a system of two equations, one of which is an explicit non-local equation for the wave height and for the velocity potential evaluated on the free surface. Here, in the two-dimensional case: (a) we generalize the relevant formulation to the case of constant vorticity, as well as to the case where the free surface is described by a multivalued function; (b) in the case of travelling waves we derive an upper bound for the free surface; (c) in the case of constant vorticity we construct a sequence of nearly Hamiltonian systems which provide an approximation in the asymptotic limit of certain physical small parameters. In particular, the explicit dependence of the vorticity on the coefficients of the Korteweg–de Vries equation is clarified.


Geosciences ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 351
Author(s):  
Georges Sadaka ◽  
Denys Dutykh

A simplified nonlinear dispersive Boussinesq system of the Benjamin–Bona–Mahony (BBM)-type, initially derived by Mitsotakis (2009), is employed here in order to model the generation and propagation of surface water waves over variable bottom. The simplification consists in prolongating the so-called Boussinesq approximation to bathymetry terms, as well. Using the finite element method and the FreeFem++ software, we solve this system numerically for three different complexities for the bathymetry function: a flat bottom case, a variable bottom in space, and a variable bottom both in space and in time. The last case is illustrated with the Java 2006 tsunami event. This article is designed to be a pedagogical paper presenting to tsunami wave community a new technology and a novel adaptivity technique, along with all source codes necessary to implement it.


2009 ◽  
Vol 618 ◽  
pp. 263-277 ◽  
Author(s):  
M. ONORATO ◽  
A. R. OSBORNE ◽  
P. A. E. M. JANSSEN ◽  
D. RESIO

We investigate theoretically the irreversibile energy transfer in flat bottom shallow water waves. Starting from the oldest weakly nonlinear dispersive wave model in shallow water, i.e. the original quadratic Boussinesq equations, and by developing a statistical theory (kinetic equation) of the aforementioned equations, we show that the four-wave resonant interactions are naturally part of the shallow water wave dynamics. These interactions are responsible for a constant flux of energy in the wave spectrum, i.e. an energy cascade towards high wavenumbers, leading to a power law in the wave spectrum of the form of k−3/4. The nonlinear time scale of the interaction is found to be of the order of (h/a)4 wave periods, with a the wave amplitude and h the water depth. We also compare the kinetic equation arising from the Boussinesq equations with the arbitrary-depth Hasselmann equation and show that, in the limit of shallow water, the two equations coincide. It is found that in the narrow band case, both in one-dimensional propagation and in the weakly two-dimensional case, there is no irreversible energy transfer because the coupling coefficient in the kinetic equation turns out to be identically zero on the resonant manifold.


Author(s):  
Georges Sadaka ◽  
Denys Dutykh

A simplified nonlinear dispersive system of BBM-type, initially derived by D. Mitsotakis, is employed here in order to model the generation and propagation of surface water waves over variable bottom. The simplification consists in applying the so-called Boussinesq approximation. Using the finite element method and the FreeFem++ software, we solve numerically this system for three different complexities for the bathymetry function: a flat bottom case, a variable bottom in space, and a variable bottom both in space and in time. The last case is illustrated with the Java 2006 tsunami event. This article is designed rather as a tutorial paper even if it contains the description of completely new adaptation techniques.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Kanato Goto ◽  
Thomas Hartman ◽  
Amirhossein Tajdini

Abstract Quantum extremal islands reproduce the unitary Page curve of an evaporating black hole. This has been derived by including replica wormholes in the gravitational path integral, but for the transient, evaporating black holes most relevant to Hawking’s paradox, these wormholes have not been analyzed in any detail. In this paper we study replica wormholes for black holes formed by gravitational collapse in Jackiw-Teitelboim gravity, and confirm that they lead to the island rule for the entropy. The main technical challenge is that replica wormholes rely on a Euclidean path integral, while the quantum extremal islands of an evaporating black hole exist only in Lorentzian signature. Furthermore, the Euclidean equations for the Schwarzian mode are non-local, so it is unclear how to connect to the local, Lorentzian dynamics of an evaporating black hole. We address these issues with Schwinger-Keldysh techniques and show how the non-local equations reduce to the local ‘boundary particle’ description in special cases.


2014 ◽  
Vol 44 (3) ◽  
pp. 922-943 ◽  
Author(s):  
V. O. Ivchenko ◽  
S. Danilov ◽  
B. Sinha ◽  
J. Schröter

Abstract Integral constraints for momentum and energy impose restrictions on parameterizations of eddy potential vorticity (PV) fluxes. The impact of these constraints is studied for a wind-forced quasigeostrophic two-layer zonal channel model with variable bottom topography. The presence of a small parameter, given by the ratio of Rossby radius to the width of the channel, makes it possible to find an analytical/asymptotic solution for the zonally and time-averaged flow, given diffusive parameterizations for the eddy PV fluxes. This solution, when substituted in the constraints, leads to nontrivial explicit restrictions on diffusivities. The system is characterized by four dimensionless governing parameters with a clear physical interpretation. The bottom form stress, the major term balancing the external force of wind stress, depends on the governing parameters and fundamentally modifies the restrictions compared to the flat bottom case. While the analytical solution bears an illustrative character, it helps to see certain nontrivial connections in the system that will be useful in the analysis of more complicated models of ocean circulation. A numerical solution supports the analytical study and confirms that the presence of topography strongly modifies the eddy fluxes.


1990 ◽  
Vol 216 ◽  
pp. 285-298 ◽  
Author(s):  
Xiaowei S. He ◽  
John G. Georgiadis

We use weakly nonlinear analysis via a two-parameter expansion to study bifurcation of conduction into cellular convection of an internally heated fluid in a porous medium that forms a horizontal layer between two isothermal walls. The Darcy–Boussinesq model of convection is enhanced by including two nonlinear terms: (i) quadratic (Forchheimer) drag; and (ii) hydrodynamic dispersion enhancement of the thermal conductivity described by a weak linear relationship between effective conductivity and local amplitude of filtration velocity. The impact of the second term on the shape of the bifurcation curve for two-dimensional rolls is profound in the presence of uniform volumetric heating. The resulting bifurcation structure is unlike any pitchfork bifurcations typical of the classical Bénard problem. Although direct experimental validation of the novel bifurcation is not available, we would like to register it as an alternative or a supplement to models of small imperfections, and as an attempt to account for the scatter of observed critical values for the first bifurcation.


2021 ◽  
Vol 118 (14) ◽  
pp. e2019348118
Author(s):  
Guillaume Vanderhaegen ◽  
Corentin Naveau ◽  
Pascal Szriftgiser ◽  
Alexandre Kudlinski ◽  
Matteo Conforti ◽  
...  

The classical theory of modulation instability (MI) attributed to Bespalov–Talanov in optics and Benjamin–Feir for water waves is just a linear approximation of nonlinear effects and has limitations that have been corrected using the exact weakly nonlinear theory of wave propagation. We report results of experiments in both optics and hydrodynamics, which are in excellent agreement with nonlinear theory. These observations clearly demonstrate that MI has a wider band of unstable frequencies than predicted by the linear stability analysis. The range of areas where the nonlinear theory of MI can be applied is actually much larger than considered here.


2020 ◽  
Vol 11 (2) ◽  
pp. 56-68
Author(s):  
Nurlybek Zhumatayev ◽  
Zhanat Umarova ◽  
Gani Besbayev ◽  
Almira Zholshiyeva

In this work, an attempt has been made to eliminate the contradiction of the Smoluchowski equation, using modern distributed algorithms for creating calculation algorithm and implementation a program for building a more perfect model by changing the type of the kinetic equation of aggregation taking into account the relaxation times. On the basis of the applied Mathcad package, there is a developed computer model for calculating the aggregation of dispersed systems. The obtained system of differential equations of the second order is solved by the Runge-Kutt method. The authors are presetting the initial conditions of the calculation. A subsequent analysis was made of the obtained non-local equations and the study of the behavior of solutions of different orders. Also, this research can be aimed at the generalization of the proposed approach for the analysis of aggregation processes in heterogeneous dispersed systems, involving the creation of aggregation models, taking into account both time and space non-locality.


Sign in / Sign up

Export Citation Format

Share Document