scholarly journals Magnetohydrodynamic drift equations: from Langmuir circulations to magnetohydrodynamic dynamo?

2012 ◽  
Vol 698 ◽  
pp. 51-61 ◽  
Author(s):  
V. A. Vladimirov

AbstractWe derive the closed system of averaged magnetohydrodynamic (MHD) equations for general oscillating flows. The used small parameter of our asymptotic theory is the dimensionless inverse frequency, and the leading term for a velocity field is chosen to be purely oscillating. The employed mathematical approach combines the two-timing method and the notion of a distinguished limit. The properties of commutators are used to simplify calculations. The derived averaged equations are similar to the original MHD equations, but surprisingly (instead of the commonly expected Reynolds stresses) a drift velocity plays a part of an additional advection velocity. In the special case of a vanishing magnetic field $\mathbi{h}\equiv 0$, the averaged equations produce the Craik–Leibovich equations for Langmuir circulations (which can be called ‘vortex dynamo’). We suggest that, since the mathematical structure of the full averaged equations for $\mathbi{h}\not = 0$ is similar to those for $\mathbi{h}\equiv 0$, these full equations could lead to a possible mechanism of MHD dynamo, such as the generation of the magnetic field of the Earth.

2020 ◽  
Vol 86 (5) ◽  
Author(s):  
D. A. St-Onge ◽  
M. W. Kunz ◽  
J. Squire ◽  
A. A. Schekochihin

The turbulent amplification of cosmic magnetic fields depends upon the material properties of the host plasma. In many hot, dilute astrophysical systems, such as the intracluster medium (ICM) of galaxy clusters, the rarity of particle–particle collisions allows departures from local thermodynamic equilibrium. These departures – pressure anisotropies – exert anisotropic viscous stresses on the plasma motions that inhibit their ability to stretch magnetic-field lines. We present an extensive numerical study of the fluctuation dynamo in a weakly collisional plasma using magnetohydrodynamic (MHD) equations endowed with a field-parallel viscous (Braginskii) stress. When the stress is limited to values consistent with a pressure anisotropy regulated by firehose and mirror instabilities, the Braginskii-MHD dynamo largely resembles its MHD counterpart, particularly when the magnetic field is dynamically weak. If instead the parallel viscous stress is left unabated – a situation relevant to recent kinetic simulations of the fluctuation dynamo and, we argue, to the early stages of the dynamo in a magnetized ICM – the dynamo changes its character, amplifying the magnetic field while exhibiting many characteristics reminiscent of the saturated state of the large-Prandtl-number ( ${Pm}\gtrsim {1}$ ) MHD dynamo. We construct an analytic model for the Braginskii-MHD dynamo in this regime, which successfully matches simulated dynamo growth rates and magnetic-energy spectra. A prediction of this model, confirmed by our numerical simulations, is that a Braginskii-MHD plasma without pressure-anisotropy limiters will not support a dynamo if the ratio of perpendicular and parallel viscosities is too small. This ratio reflects the relative allowed rates of field-line stretching and mixing, the latter of which promotes resistive dissipation of the magnetic field. In all cases that do exhibit a viable dynamo, the generated magnetic field is organized into folds that persist into the saturated state and bias the chaotic flow to acquire a scale-dependent spectral anisotropy.


1998 ◽  
Vol 21 (2) ◽  
pp. 299-305 ◽  
Author(s):  
Fengxin Chen ◽  
Ping Wang ◽  
Chaoshun Qu

In this paper we study the system governing flows in the magnetic field within the earth. The system is similar to the magnetohydrodynamic (MHD) equations. For initial data in spaceLp, we obtained the local in time existence and uniqueness ofweak solutions of the system subject to appropriate initial and boundary conditions.


Author(s):  
Андрей Геннадьевич Деменков ◽  
Геннадий Георгиевич Черных

С применением математической модели, включающей осредненные уравнения движения и дифференциальные уравнения переноса нормальных рейнольдсовых напряжений и скорости диссипации, выполнено численное моделирование эволюции безымпульсного закрученного турбулентного следа с ненулевым моментом количества движения за телом вращения. Получено, что начиная с расстояний порядка 1000 диаметров от тела течение становится автомодельным. На основе анализа результатов численных экспериментов построены упрощенные математические модели дальнего следа. Swirling turbulent jet flows are of interest in connection with the design and development of various energy and chemical-technological devices as well as both study of flow around bodies and solving problems of environmental hydrodynamics, etc. An interesting example of such a flow is a swirling turbulent wake behind bodies of revolution. Analysis of the known works on the numerical simulation of swirling turbulent wakes behind bodies of revolution indicates lack of knowledge on the dynamics of the momentumless swirling turbulent wake. A special case of the motion of a body with a propulsor whose thrust compensates the swirl is studied, but there is a nonzero integral swirl in the flow. In previous works with the participation of the authors, a numerical simulation of the initial stage of the evolution of a swirling momentumless turbulent wake based on a hierarchy of second-order mathematical models was performed. It is shown that a satisfactory agreement of the results of calculations with the available experimental data is possible only with the use of a mathematical model that includes the averaged equations of motion and differential equations for the transfer of normal Reynolds stresses along the rate of dissipation. In the present work, based on the above mentioned mathematical model, a numerical simulation of the evolution of a far momentumless swirling turbulent wake with a nonzero angular momentum behind the body of revolution is performed. It is shown that starting from distances of the order of 1000 diameters from the body the flow becomes self-similar. Based on the analysis of the results of numerical experiments, simplified mathematical models of the far wake are constructed. The authors dedicate this work to the blessed memory of Vladimir Alekseevich Kostomakha.


Author(s):  
Giulia Becatti ◽  
Francesco Burgalassi ◽  
Fabrizio Paganucci ◽  
Matteo Zuin ◽  
Dan M Goebel

Abstract A significant number of plasma instabilities occur in the region just outside of hollow cathodes, depending on the injected gas flow, the current level and the application of an external magnetic field. In particular, the presence of an axial magnetic field induces a helical mode, affecting all the plasma parameters and the total current transported by the plasma. To explore the onset and behavior of this helical mode, the fluctuations in the plasma parameters in the current-carrying plume outside of a hollow cathode discharge have been investigated. The hollow cathode was operated at a current of 25 A, and at variable levels of propellant flow rate and applied magnetic fields. Electromagnetic probes were used to measure the electromagnetic fluctuations, and correlation analysis between each of the probe signals provided spatial-temporal characterization of the generated waves. Time-averaged plasma parameters, such as plasma potential and ion energy distribution function, were also collected in the near-cathode plume region by means of scanning emissive probe and retarding potential analyzer. The results show that the helical mode exists in the cathode plume at sufficiently high applied magnetic field, and is characterized by the presence of a finite electromagnetic component in the axial direction, detectable at discharge currents $\geq$ 25 A. A theoretical analysis of this mode reveals that one possible explanation is consistent with the hypotheses of resistive magnetohydrodynamics, which predicts the presence of helical modes in the forms of resistive kink. The analysis has been carried out by linear perturbation of the resistive MHD equations, from which it is possible to obtain the dispersion relation of the mode and find the $k-\omega$ unstable branch associated with the instability. These findings provided the basis for more detailed investigation of resistive MHD modes and their effect in the plume of hollow cathodes developed for electric propulsion application.


2020 ◽  
Vol 90 (3) ◽  
pp. 482
Author(s):  
Н.М. Горшунов ◽  
Е.П. Потанин

Equations are obtained that describe the characteristics of the azimuthal motion and radial expansion of a plasma jet under the action of a rotating transverse magnetic field of a dipole configuration in a longitudinal static magnetic field. The analysis was carried out both in the multicomponent approximation and on the basis of MHD equations taking into account the Hall effect. Based on the obtained dependences of the azimuthal and radial ion velocities on the magnetic field values, the separation characteristics of the direct-flow plasma centrifuge are estimated for the separation of a two-component binary mixture simulating spent nuclear fuel. It was shown that the concentration of the heavy uranium-plutonium component in the product flow can be increased from the initial 96 to 99.8% with a fuel component extraction of 0.87.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Yana Guo ◽  
Yan Jia ◽  
Bo-Qing Dong

<p style='text-indent:20px;'>This paper is devoted to understanding the global stability of perturbations near a background magnetic field of the 2D magnetohydrodynamic (MHD) equations with partial dissipation. We establish the global stability for the solutions of the nonlinear MHD system by the bootstrap argument.</p>


2020 ◽  
pp. 197-197
Author(s):  
Jasmina Bogdanovic-Jovanovic ◽  
Zivojin Stamenkovic

An overview of previous researches related to the problem of flow around a bluff-body, using experimental and numerical methods, is presented in the paper. Experimental investigation was performed by a Laser Doppler Anemometer (LDA), measuring velocity components of the water flow around a smooth sphere and a sphere with dimples in square channels. Measurement results in subcritical velocity flow field, velocity fluctuation components, lift, drag and pressure coefficients, and 2D Reynolds stress at quasi-stationary flow are conducted using 1D LDA probe. The obtained experimental results are compared with numerical simulations, which are performed using the ANSYS-CFX software. For the numerical simulations of quasi-steady-state flow, k-? turbulent model was used, while for numerical simulation of unsteady fluid flow and for the comparison of results related to the eddy structures, vortex shedding and Reynolds stresses, Detached Eddy Simulation were used. Since the obtained results of experimental and numerical investigation of flow around smooth sphere and sphere with dimples showed good agreement, the considered flow problem was expanded by introducing the influence of a transverse magnetic field with a slight modification of the electrical conductivity of the working fluid. The other physical properties of the fluid remained the same, which also corresponds to realistically possible physical conditions. Numerical simulations were performed for three different values of Hartmann number and very small values of Reynolds magnetic number (inductionless approximation). Comparisons and analyzes of the results were made for the cases containing a magnetic field and those with an absence of a magnetic field.


2020 ◽  
Vol 633 ◽  
pp. A87 ◽  
Author(s):  
L. Griton ◽  
F. Pantellini

Context. As proven by measurements at Uranus and Neptune, the magnetic dipole axis and planetary spin axis can be off by a large angle exceeding 45°. The magnetosphere of such an (exo-)planet is highly variable over a one-day period and it does potentially exhibit a complex magnetic tail structure. The dynamics and shape of rotating magnetospheres do obviously depend on the planet’s characteristics but also, and very substantially, on the orientation of the planetary spin axis with respect to the impinging, generally highly supersonic, stellar wind. Aims. On its orbit around the Sun, the orientation of Uranus’ spin axis with respect to the solar wind changes from quasi-perpendicular (solstice) to quasi-parallel (equinox). In this paper, we simulate the magnetosphere of a fictitious Uranus-like planet plunged in a supersonic plasma (the stellar wind) at equinox. A simulation with zero wind velocity is also presented in order to help disentangle the effects of the rotation from the effects of the supersonic wind in the structuring of the planetary magnetic tail. Methods. The ideal magnetohydrodynamic (MHD) equations in conservative form are integrated on a structured spherical grid using the Message-Passing Interface-Adaptive Mesh Refinement Versatile Advection Code (MPI-AMRVAC). In order to limit diffusivity at grid level, we used background and residual decomposition of the magnetic field. The magnetic field is thus made of the sum of a prescribed time-dependent background field B0(t) and a residual field B1(t) computed by the code. In our simulations, B0(t) is essentially made of a rigidly rotating potential dipole field. Results. The first simulation shows that, while plunged in a non-magnetised plasma, a magnetic dipole rotating about an axis oriented at 90° with respect to itself does naturally accelerate the plasma away from the dipole around the rotation axis. The acceleration occurs over a spatial scale of the order of the Alfvénic co-rotation scale r*. During the acceleration, the dipole lines become stretched and twisted. The observed asymptotic fluid velocities are of the order of the phase speed of the fast MHD mode. In two simulations where the surrounding non-magnetised plasma was chosen to move at supersonic speed perpendicularly to the rotation axis (a situation that is reminiscent of Uranus in the solar wind at equinox), the lines of each hemisphere are symmetrically twisted and stretched as before. However, they are also bent by the supersonic flow, thus forming a magnetic tail of interlaced field lines of opposite polarity. Similarly to the case with no wind, the interlaced field lines and the attached plasma are accelerated by the rotation and also by the transfer of kinetic energy flux from the surrounding supersonic flow. The tailwards fluid velocity increases asymptotically towards the externally imposed flow velocity, or wind. In one more simulation, a transverse magnetic field, to both the spin axis and flow direction, was added to the impinging flow so that magnetic reconnection could occur between the dipole anchored field lines and the impinging field lines. No major difference with respect to the no-magnetised flow case is observed, except that the tailwards acceleration occurs in two steps and is slightly more efficient. In order to emphasise the effect of rotation, we only address the case of a fast-rotating planet where the co-rotation scale r* is of the order of the planetary counter-flow magnetopause stand-off distance rm. For Uranus, r*≫ rm and the effects of rotation are only visible at large tailwards distances r ≫ rm.


1983 ◽  
Vol 102 ◽  
pp. 67-71
Author(s):  
W. Deinzer ◽  
G. Hensler ◽  
D. Schmitt ◽  
M. Schüssler ◽  
E. Weisshaar

We give a short summary of some results of a numerical study of magnetic field concentrations in the solar photosphere and upper convection zone. We have developed a 2D time dependent code for the full MHD equations (momentum equation, equation of continuity, induction equation for infinite conductivity and energy equation) in slab geometry for a compressible medium. A Finite-Element-technique is used. Convective energy transport is described by the mixing-length formalism while the diffusion approximation is employed for radiation. We parametrize the inhibition of convective heat flow by the magnetic field and calculate the material functions (opacity, adiabatic temperature gradient, specific heat) self-consistently. Here we present a nearly static flux tube model with a magnetic flux of ∼ 1018 mx, a depth of 1000 km and a photospheric diameter of ∼ 300 km as the result of a dynamical calculation. The influx of heat within the flux tube at the bottom of the layer is reduced to 0.2 of the normal value. The mass distribution is a linear function of the flux function A: dm(A)/dA = const. Fig. 1 shows the model: Isodensities (a), fieldlines (b), isotherms (c) and lines of constant continuum optical depth (d) are given. The “Wilson depression” (height difference between τ = 1 within and outside the tube) is ∼ 150 km and the maximum horizontal temperature deficit is ∼ 3000 K. Field strengths as function of x for three different depths and as function of depth along the symmetry axis are shown in (e) and (f), respectively. Note the sharp edge of the tube.


Sign in / Sign up

Export Citation Format

Share Document