On the scaling in sink-flow turbulent boundary layers

2013 ◽  
Vol 737 ◽  
pp. 329-348 ◽  
Author(s):  
Shivsai Ajit Dixit ◽  
O. N. Ramesh

AbstractScaling of the streamwise velocity spectrum ${\phi }_{11} ({k}_{1} )$ in the so-called sink-flow turbulent boundary layer is investigated in this work. The present experiments show strong evidence for the ${ k}_{1}^{- 1} $ scaling i.e. ${\phi }_{11} ({k}_{1} )= {A}_{1} { U}_{\tau }^{2} { k}_{1}^{- 1} $, where ${k}_{1} $ is the streamwise wavenumber and ${U}_{\tau } $ is the friction velocity. Interestingly, this ${ k}_{1}^{- 1} $ scaling is observed much farther from the wall and at much lower flow Reynolds number (both differing by almost an order of magnitude) than what the expectations from experiments on a zero-pressure-gradient turbulent boundary layer flow would suggest. Furthermore, the coefficient ${A}_{1} $ in the present sink-flow data is seen to be non-universal, i.e. ${A}_{1} $ varies with height from the wall; the scaling exponent −1 remains universal. Logarithmic variation of the so-called longitudinal structure function, which is the physical-space counterpart of spectral ${ k}_{1}^{- 1} $ scaling, is also seen to be non-universal, consistent with the non-universality of ${A}_{1} $. These observations are to be contrasted with the universal value of ${A}_{1} $ (along with the universal scaling exponent of −1) reported in the literature on zero-pressure-gradient turbulent boundary layers. Theoretical arguments based on dimensional analysis indicate that the presence of a streamwise pressure gradient in sink-flow turbulent boundary layers makes the coefficient ${A}_{1} $ non-universal while leaving the scaling exponent −1 unaffected. This effect of the pressure gradient on the streamwise spectra, as discussed in the present study (experiments as well as theory), is consistent with other recent studies in the literature that are focused on the structural aspects of turbulent boundary layer flows in pressure gradients (Harun et al., J. Fluid Mech., vol. 715, 2013, pp. 477–498); the present paper establishes the link between these two. The variability of ${A}_{1} $ accommodated in the present framework serves to clarify the ideas of universality of the ${ k}_{1}^{- 1} $ scaling.

Author(s):  
Ju Hyun Shin ◽  
Seung Jin Song

Rough wall turbulent boundary layers subjected to pressure gradient have engineering interest for many fluid machinery applications. A number of investigations have been made to understand surface roughness and pressure gradient effects on turbulent boundary layer characteristics, but separately. In this paper, turbulent boundary layers over a flat plate with surface roughness and favorable pressure gradient (FPG) are experimentally investigated. Boundary layers in different streamwise locations were measured using boundary layer type hot-wire anemometry. Rough wall zero pressure gradient (ZPG) turbulent boundary layers were also measured to compare the result from the investigation. The surface roughness was applied by attaching sandpapers on the flat plate. The magnitude of surface roughness is representative of land-based gas turbine compressor blade. Pressure gradient was adjusted using movable endwall of the test section. Results from the measurement show characteristics of the turbulent boundary layer growth affected by both surface roughness and favorable pressure gradient.


2013 ◽  
Vol 715 ◽  
pp. 477-498 ◽  
Author(s):  
Zambri Harun ◽  
Jason P. Monty ◽  
Romain Mathis ◽  
Ivan Marusic

AbstractResearch into high-Reynolds-number turbulent boundary layers in recent years has brought about a renewed interest in the larger-scale structures. It is now known that these structures emerge more prominently in the outer region not only due to increased Reynolds number (Metzger & Klewicki, Phys. Fluids, vol. 13(3), 2001, pp. 692–701; Hutchins & Marusic, J. Fluid Mech., vol. 579, 2007, pp. 1–28), but also when a boundary layer is exposed to an adverse pressure gradient (Bradshaw, J. Fluid Mech., vol. 29, 1967, pp. 625–645; Lee & Sung, J. Fluid Mech., vol. 639, 2009, pp. 101–131). The latter case has not received as much attention in the literature. As such, this work investigates the modification of the large-scale features of boundary layers subjected to zero, adverse and favourable pressure gradients. It is first shown that the mean velocities, turbulence intensities and turbulence production are significantly different in the outer region across the three cases. Spectral and scale decomposition analyses confirm that the large scales are more energized throughout the entire adverse pressure gradient boundary layer, especially in the outer region. Although more energetic, there is a similar spectral distribution of energy in the wake region, implying the geometrical structure of the outer layer remains universal in all cases. Comparisons are also made of the amplitude modulation of small scales by the large-scale motions for the three pressure gradient cases. The wall-normal location of the zero-crossing of small-scale amplitude modulation is found to increase with increasing pressure gradient, yet this location continues to coincide with the large-scale energetic peak wall-normal location (as has been observed in zero pressure gradient boundary layers). The amplitude modulation effect is found to increase as pressure gradient is increased from favourable to adverse.


1966 ◽  
Vol 8 (4) ◽  
pp. 426-436 ◽  
Author(s):  
A. D. Carmichael ◽  
G. N. Pustintsev

Methods of predicting the growth of turbulent boundary layers in conical diffusers using the kinetic-energy deficit equation were developed. Three different forms of auxiliary equations were used. Comparison between the measured and predicted results showed that there was fair agreement although there was a tendency to underestimate the predicted momentum thickness and over-estimate the predicted shape factor.


1969 ◽  
Vol 73 (698) ◽  
pp. 143-147 ◽  
Author(s):  
M. K. Bull

Although a numerical solution of the turbulent boundary-layer equations has been achieved by Mellor and Gibson for equilibrium layers, there are many occasions on which it is desirable to have closed-form expressions representing the velocity profile. Probably the best known and most widely used representation of both equilibrium and non-equilibrium layers is that of Coles. However, when velocity profiles are examined in detail it becomes apparent that considerable care is necessary in applying Coles's formulation, and it seems to be worthwhile to draw attention to some of the errors and inconsistencies which may arise if care is not exercised. This will be done mainly by the consideration of experimental data. In the work on constant pressure layers, emphasis tends to fall heavily on the author's own data previously reported in ref. 1, because the details of the measurements are readily available; other experimental work is introduced where the required values can be obtained easily from the published papers.


Author(s):  
Yvan Maciel ◽  
Tie Wei ◽  
Ayse G. Gungor ◽  
Mark P. Simens

We perform a careful nondimensional analysis of the turbulent boundary layer equations in order to bring out, without assuming any self-similar behaviour, a consistent set of nondimensional parameters characterizing the outer region of turbulent boundary layers with arbitrary pressure gradients. These nondimensional parameters are a pressure gradient parameter, a Reynolds number (different from commonly used ones) and an inertial parameter. They are obtained without assuming a priori the outer length and velocity scales. They represent the ratio of the magnitudes of two types of forces in the outer region, using the Reynolds shear stress gradient (apparent turbulent force) as the reference force: inertia to apparent turbulent forces for the inertial parameter, pressure to apparent turbulent forces for the pressure gradient parameter and apparent turbulent to viscous forces for the Reynolds number. We determine under what conditions they retain their meaning, depending on the outer velocity scale that is considered, with the help of seven boundary layer databases. We find the impressive result that if the Zagarola-Smits velocity is used as the outer velocity scale, the streamwise evolution of the three ratios of forces in the outer region can be accurately followed with these non-dimensional parameters in all these flows — not just the order of magnitude of these ratios. This cannot be achieved with three other outer velocity scales commonly used for pressure gradient turbulent boundary layers. Consequently, the three new nondimensional parameters, when expressed with the Zagarola-Smits velocity, can be used to follow — in a global sense — the streamwise evolution of the stream-wise mean momentum balance in the outer region. This study provides a clear and consistent framework for the analysis of the outer region of adverse-pressure-gradient turbulent boundary layers.


2000 ◽  
Vol 122 (3) ◽  
pp. 542-546 ◽  
Author(s):  
Anupam Dewan ◽  
Jaywant H. Arakeri

The intermittency profile in the turbulent flat-plate zero pressure-gradient boundary-layer and a thick axisymmetric boundary-layer has been computed using the Reynolds-averaged k−ε−γ model, where k denotes turbulent kinetic energy, ε its rate of dissipation, and γ intermittency. The Reynolds-averaged model is simpler compared to the conditional model used in the literature. The dissipation equation of the Reynolds-averaged model is modified to account for the effect of entrainment. It has been shown that the model correctly predicts the observed intermittency of the flows. [S0098-2202(00)02403-2]


1968 ◽  
Vol 10 (5) ◽  
pp. 426-433 ◽  
Author(s):  
F. C. Lockwood

The momentum equation is solved numerically for a suggested ramp variation of the Prandtl mixing length across an equilibrium-turbulent boundary layer. The predictions of several important boundary-layer functions are compared with the equilibrium experimental data. Comparisons are also made with some recent universal recommendations for turbulent boundary layers since the equilibrium experimental data are limited. Good agreement is found between the predictions, the experimental data, and the recommendations.


2006 ◽  
Vol 129 (4) ◽  
pp. 441-448 ◽  
Author(s):  
Kunlun Liu ◽  
Richard H. Pletcher

Two compressible turbulent boundary layers have been calculated by using direct numerical simulation. One case is a subsonic turbulent boundary layer with constant wall temperature for which the wall temperature is 1.58 times the freestream temperature and the other is a supersonic adiabatic turbulent boundary layer subjected to a supersonic freestream with a Mach number 1.8. The purpose of this study is to test the strong Reynolds analogy (SRA), the Van Driest transformation, and the applicability of Morkovin’s hypothesis. For the first case, the influence of the variable density effects will be addressed. For the second case, the role of the density fluctuations, the turbulent Mach number, and dilatation on the compressibility will be investigated. The results show that the Van Driest transformation and the SRA are satisfied for both of the flows. Use of local properties enable the statistical curves to collapse toward the corresponding incompressible curves. These facts reveal that both the compressibility and variable density effects satisfy the similarity laws. A study about the differences between the compressibility effects and the variable density effects associated with heat transfer is performed. In addition, the difference between the Favre average and Reynolds average is measured, and the SGS terms of the Favre-filtered Navier-Stokes equations are calculated and analyzed.


2005 ◽  
Author(s):  
Rau´l Bayoa´n Cal ◽  
Xia Wang ◽  
Luciano Castillo

Applying similarity analysis to the RANS equations of motion for a pressure gradient turbulent boundary layer, Castillo and George [1] obtained the scalings for the mean deficit velocity and the Reynolds stresses. Following this analysis, Castillo and George studied favorable pressure gradient (FPG) turbulent boundary layers. They were able to obtain a single curve for FPG flows when scaling the mean deficit velocity profiles. In this study, FPG turbulent boundary layers are analyzed as well as relaminarized boundary layers subjected to an even stronger FPG. It is found that the mean deficit velocity profiles diminish when scaled using the Castillo and George [1] scaling, U∞, and the Zagarola and Smits [2] scaling, U∞δ*/δ. In addition, Reynolds stress data has been analyzed and it is found that the relaminarized boundary layer data decreases drastically in all components of the Reynolds stresses. Furthermore, it will be shown that the shape of the profile for the wall-normal and Reynolds shear stress components change drastically given the relaminarized state. Therefore, the mean velocity deficit profiles as well as Reynolds stresses are found to be necessary in order to understand not only FPG flows, but also relaminarized boundary layers.


Sign in / Sign up

Export Citation Format

Share Document