On the microphysical behaviour of wind-forced water surfaces and consequent re-aeration

2014 ◽  
Vol 743 ◽  
pp. 399-447 ◽  
Author(s):  
William L. Peirson ◽  
James W. Walker ◽  
Michael L. Banner

AbstractA detailed laboratory investigation of the mechanical and low-solubility gas coupling between wind and water has been undertaken using a suite of microphysical measurement techniques. Under a variety of wind conditions and in the presence and absence of mechanically generated short waves, approximately fetch-independent surface conditions have been achieved over short laboratory fetches of several metres. The mechanical coupling of the surface is found to be consistent with Banner (J. Fluid Mech. vol. 211, 1990, pp. 463–495) and Banner & Peirson (J. Fluid Mech. vol. 364, 1998, pp. 115–145). Bulk observations of re-aeration are consistent with previous laboratory studies. The surface kinematical behaviour is in accordance with the observations of Peirson & Banner (J. Fluid Mech. vol. 479, 2003, pp. 1–38). Also, their predictions of a strong enhancement of low-solubility gas flux at the onset of microscale breaking is confirmed and direct observations show a concomitant onset of very thin aqueous diffusion sublayers. It is found that the development of strong parasitic capillary waves towards the incipient breaking limit does not noticeably enhance constituent transfer. Across the broad range of conditions investigated during this study, the local instantaneous constituent transfer rate remains approximately log-normally distributed with an approximately constant standard deviation of $0.62\pm 0.15({\mathrm{log}}_e(\mathrm{m}~ {\mathrm{s}}^{-1}))$. Although wind-forced water surfaces are shown to be punctuated by intense tangential stresses and local surface convergence, localized surface convergence does not appear to be the single critical factor determining exchange rate. Larger-scale orbital wave straining is found to be a significant constituent transfer process in contrast to Witting (J. Fluid Mech. vol. 50, 1971, pp. 321–334) findings for heat fluxes, but the measured effects are consistent with his model. By comparing transfer rates in the presence and absence of microscale breaking, low-solubility gas transfer was decomposed into its turbulent/capillary ripple, gravity-wave-related and microscale breaking contributions. It was found that an efficiency factor of approximately $17\, \%$ needs to be applied to Peirson & Banner’s model, which is extended to field conditions. Although bulk thermal effects were observed and thermal diffusion layers are presumed thicker than their mass diffusion counterparts, significant thermal influences were not observed in the results.

2015 ◽  
Vol 1130 ◽  
pp. 214-217
Author(s):  
Catherine Joulian ◽  
Jérôme Jacob ◽  
Mickaël Beaulieu ◽  
Patrick d’Hugues ◽  
Anne Gwénaëlle Guézennec

In bioleaching processes, gas transfer is often considered as one of the key mechanisms that will influence the leaching efficiency and more precisely the leaching rate. Oxygen can be a limiting factor in bacterial leaching because of its low solubility. One way to overcome this phenomenon consists in increasing the oxygen partial pressure in the gas stream supplied to the leach pulp. The primary objective of this work was to investigate the use of oxygen-enriched gas in bioleaching stirred reactors and its impact on the consortium dynamics. First tests were performed at lab scale in four successive series of 2-L bioreactors alimented either with air or with oxygen enriched gas. The microbial consortium used has proven its efficiency on several ores such as cobaltiferous pyrite and polymetallic ores in former research projects (BioMine, BioShale, ProMine). The community diversity was remarkably reproducible irrespective of the type of gas supply, in each of the successive series of reactors. Only minor changes occurred after subculturing from one batch series to the next one, highlighting the high stability of the established consortium. Different oxygen partial pressures (from 20% to 50%) were then tested in a 20-L continuous reactors pilot experiment. There was no impact on the community diversity, showing the high tolerance to oxygen of the bioleaching strains and their capacity to easily survive 50% oxygen input. The bioleaching efficiency in terms of rate and metal leaching did not seem to be changed. The use of enriched oxygen gas is not detrimental to the bioleaching strains and may be used in order to improve process operation (gas transfer, heat management...).


2001 ◽  
Vol 446 ◽  
pp. 25-65 ◽  
Author(s):  
FABRICE VERON ◽  
W. KENDALL MELVILLE

We present the results of laboratory and field measurements on the stability of wind-driven water surfaces. The laboratory measurements show that when exposed to an increasing wind starting from rest, surface current and wave generation is accompanied by a variety of phenomena that occur over comparable space and time scales. Of particular interest is the generation of small-scale, streamwise vortices, or Langmuir circulations, the clear influence of the circulations on the structure of the growing wave field, and the subsequent transition to turbulence of the surface flow. Following recent work by Melville, Shear & Veron (1998) and Veron & Melville (1999b), we show that the waves that are initially generated by the wind are then strongly modulated by the Langmuir circulations that follow. Direct measurements of the modulated wave variables are qualitatively consistent with geometrical optics and wave action conservation, but quantitative comparison remains elusive. Within the range of parameters of the experiments, both the surface waves and the Langmuir circulations first appear at constant Reynolds numbers of 370 ± 10 and 530 ± 20, respectively, based on the surface velocity and the depth of the laminar shear layer. The onset of the Langmuir circulations leads to a significant increase in the heat transfer across the surface. The field measurements in a boat basin display the same phenomena that are observed in the laboratory. The implications of the measurements for air–sea fluxes, especially heat and gas transfer, and sea-surface temperature, are discussed.


Water ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 2730
Author(s):  
Vladimir Serdyukov ◽  
Nikolay Miskiv ◽  
Anton Surtaev

This paper demonstrates the advantages and prospects of transparent design of the heating surface for the simultaneous study of the hydrodynamic and thermal characteristics of spray cooling. It was shown that the high-speed recording from the reverse side of such heater allows to identify individual droplets before their impact on the forming liquid film, which makes it possible to measure their sizes with high spatial resolution. In addition, such format enables one to estimate the number of droplets falling onto the impact surface and to study the features of the interface evolution during the droplets’ impacts. In particular, the experiments showed various possible scenarios for this interaction, such as the formation of small-scale capillary waves during impacts of small droplets, as well as the appearance of “craters” and splashing crowns in the case of large ones. Moreover, the unsteady temperature field during spray cooling in regimes without boiling was investigated using high-speed infrared thermography. Based on the obtained data, the intensity of heat transfer during spray cooling for various liquid flow rates and heat fluxes was analyzed. It was shown that, for the studied regimes, the heat transfer coefficient weakly depends on the heat flux density and is primarily determined by the flow rate. In addition, the comparison of the processes of spray cooling and nucleate boiling was made, and an analogy was shown in the mechanisms that determine their intensity of heat transfer.


1986 ◽  
Vol 125 (1) ◽  
pp. 107-117 ◽  
Author(s):  
Twen Poh Tang ◽  
David L. Macmillan

1. A re-examination of fast stepping in free-walking cockroaches showed that there was considerable variation in the alternating tripod gait. 2. Small load increments applied to the whole animal significantly reduced this variability and concentrated the range and speed of movements used. 3. Animals suspended above oiled glass surfaces moved their legs in normal gait patterns indicating that mechanical coupling via the substrate was not a critical factor for normal high-speed coordination. 4. Increasing the viscosity of the oil produced the same reduction in variability found with load increment so the change cannot be due to increased mechanical coupling. 5. Increasing the viscosity of the oil under one leg alone resulted in concentration over the whole pattern so the result was not considered to be due to viscosity changes. 6. The changes seen in artificial loading situations were mimicked in natural loading situations such as walking up a slight incline. 7. The functional significance of the phenomenon for the stability of the rapidly moving animal is considered and the role of load afference in biasing central pattern generators to produce a continuous range of functional output is discussed.


1993 ◽  
Vol 37 ◽  
pp. 821-824
Author(s):  
Kosei Takehara ◽  
Takeharu Etoh ◽  
Yoshihiro Kishida
Keyword(s):  
Co2 Gas ◽  

Sign in / Sign up

Export Citation Format

Share Document