scholarly journals Suspension dynamics: moving beyond steady

2014 ◽  
Vol 752 ◽  
pp. 1-4 ◽  
Author(s):  
Jason E. Butler

AbstractThe dynamics of flowing, concentrated suspensions of non-colloidal particles continues to surprise, despite decades of work and the widespread importance of suspension transport properties to industrial processes and natural phenomena. Blanc, Lemaire & Peters (J. Fluid Mech., 2014, vol. 746, R4) report a striking example. They probed the time-dependent dynamics of concentrated suspensions of rigid and neutrally buoyant spheres by simultaneously measuring the oscillatory rheology and the sedimentation rate of a falling ball. The sedimentation velocity of the ball through the suspension depends strongly on the frequency of oscillation, though the rheology was found to be independent of frequency. The results demonstrate the complexities of suspension flows and highlight opportunities for improving models by exploring suspension dynamics and rheology over a wide range of conditions, beyond steady and unidirectional ones.

TAPPI Journal ◽  
2016 ◽  
Vol 15 (5) ◽  
pp. 331-335 ◽  
Author(s):  
LEBO XU ◽  
JEREMY MYERS ◽  
PETER HART

Retention of cationic dispersed rosin size was studied via turbidity measurements on stock filtrate with different alum and dispersed rosin size dosages. Stock charge characteristics were analyzed using both an analysis of charge demand determined via a streaming current detector and an evaluation of zeta potential of the fibers by streaming potential measurement. The results indicated that an optimum amount of alum existed such that good sizing retention was maintained throughout a wide range of dispersed rosin size dosages. However, when an excessive amount of alum was used and fines and colloidal particles were transitioned from anionic to cationic, the cationic size retention was reduced. Laboratory results were confirmed with a paper machine trial. All data suggested that a stock charge study was necessary to identify optimal alum dosage for a cationic dispersed rosin sizing program.


2017 ◽  
Vol 28 (5) ◽  
pp. 708-715
Author(s):  
J. R. OCKENDON ◽  
B. D. SLEEMAN

Over the two days 2–3 March 2017, about 80 mathematicians and friends gathered in Cambridge to celebrate the life and work of Joseph Bishop Keller (1923–2016), one of the pre-eminent applied mathematicians of the 20th century. Joe, as he was known throughout the world, made pioneering contributions to a wide range of natural phenomena and developed fundamental mathematical techniques with which to understand them. Twenty-four talks were presented at the meeting, given by mathematicians who have either worked with Joe or have been influenced by his work. Rather than summarise each presentation, we have collated all the contributions under the headings of waves, fluids, solids, chemistry and biology, and finally some history.


Author(s):  
Kripa K. Varanasi ◽  
Tao Deng

Heterogeneous nucleation of water plays an important role in wide range of natural and industrial processes. Though heterogeneous nucleation of water is ubiquitous and everyday experience, spatial control of this important phenomenon is extremely difficult. Here we show, for the first time, that spatial control in the heterogeneous nucleation of water can be achieved by manipulating the local nucleation energy barrier and nucleation rate via the modification of the local intrinsic wettability of a surface by patterning hybrid hydrophobic-hydrophilic regions on a surface. Such ability to control water nucleation could address the condensation-related limitations of superhydrophobic surfaces, and has implications for efficiency enhancements in energy and desalination systems.


2012 ◽  
Vol 693 ◽  
pp. 345-366 ◽  
Author(s):  
L. Jibuti ◽  
S. Rafaï ◽  
P. Peyla

AbstractIn this paper, we conduct a numerical investigation of sheared suspensions of non-colloidal spherical particles on which a torque is applied. Particles are mono-dispersed and neutrally buoyant. Since the torque modifies particle rotation, we show that it can indeed strongly change the effective viscosity of semi-dilute or even more concentrated suspensions. We perform our calculations up to a volume fraction of 28 %. And we compare our results to data obtained at 40 % by Yeo and Maxey (Phys. Rev. E, vol. 81, 2010, p. 62501) with a totally different numerical method. Depending on the torque orientation, one can increase (decrease) the rotation of the particles. This results in a strong enhancement (reduction) of the effective shear viscosity of the suspension. We construct a dimensionless number $\Theta $ which represents the average relative angular velocity of the particles divided by the vorticity of the fluid generated by the shear flow. We show that the contribution of the particles to the effective viscosity can be suppressed for a given and unique value of $\Theta $ independently of the volume fraction. In addition, we obtain a universal behaviour (i.e. independent of the volume fraction) when we plot the relative effective viscosity divided by the relative effective viscosity without torque as a function of $\Theta $. Finally, we show that a modified Faxén law can be equivalently established for large concentrations.


2013 ◽  
Vol 724 ◽  
pp. 95-122 ◽  
Author(s):  
C. Ancey ◽  
N. Andreini ◽  
G. Epely-Chauvin

AbstractThis paper addresses the dam-break problem for particle suspensions, that is, the flow of a finite volume of suspension released suddenly down an inclined flume. We were concerned with concentrated suspensions made up of neutrally buoyant non-colloidal particles within a Newtonian fluid. Experiments were conducted over wide ranges of slope, concentration and mass. The major contributions of our experimental study are the simultaneous measurement of local flow properties far from the sidewalls (velocity profile and, with lower accuracy, particle concentration) and macroscopic features (front position, flow depth profile). To that end, the refractive index of the fluid was adapted to closely match that of the particles, enabling data acquisition up to particle volume fractions of 60 %. Particle migration resulted in the blunting of the velocity profile, in contrast to the parabolic profile observed in homogeneous Newtonian fluids. The experimental results were compared with predictions from lubrication theory and particle migration theory. For solids fractions as large as 45 %, the flow behaviour did not differ much from that of a homogeneous Newtonian fluid. More specifically, we observed that the velocity profiles were closely approximated by a parabolic form and there was little evidence of particle migration throughout the depth. For particle concentrations in the 52–56 % range, the flow depth and front position were fairly well predicted by lubrication theory, but taking a closer look at the velocity profiles revealed that particle migration had noticeable effects on the shape of the velocity profile (blunting), but had little impact on its strength, which explained why lubrication theory performed well. Particle migration theories (such as the shear-induced diffusion model) successfully captured the slow evolution of the velocity profiles. For particle concentrations in excess of 56 %, the macroscopic flow features were grossly predicted by lubrication theory (to within 20 % for the flow depth, 50 % for the front position). The flows seemed to reach a steady state, i.e. the shape of the velocity profile showed little time dependence.


2018 ◽  
Vol 5 (1) ◽  
pp. 27
Author(s):  
Dalia Shebl Said

<p>Wood is an old – modern material, It was and still used in a wide range in a various purposes as construction, decoration and remains the most popular material all over the world, The research provides an overview of the role of  timber as an important heritage element which forms the main characters and distinguishes features of many historical buildings in Islamic architecture and used widely in many applications, it had been played a great role in construction and structure of buildings, besides that it had been used in a beautiful purpose in different places whether indoors or outdoors use<strong> </strong>. The research presents the case studies of historical timber in different types of building in Islamic architecture which constructed from more than 1400 years ago, although the historical timber in old buildings exposed to many disasters and faced quite numbers of problems as a result of natural phenomena, man-made, humidity, and termites but it still stands proudly as a great sustain materials. The research shows how he use of timber in historical buildings as sources of inspiration and living evidence of ways of sustainable building practices the types of deterioration which appeared clearly an effect on the statue of historical timber, for that the research introduces some recommendations in the light of ICOMOS international charter “ <a href="http://www.icomos.org/en/home/179-articles-en-francais/ressources/charters-and-standards/163-principles-for-the-preservation-of-historic-timber-structures">Principles for the Preservation of Historic Timber Structures</a> 1999” that Emphasizes the necessity of taking a serious steps and clear strategy to save our heritage elements</p>


Author(s):  
Andrew Claypole ◽  
James Claypole ◽  
Tim Claypole ◽  
David Gethin ◽  
Liam Kilduff

Abstract Carbon-based pastes and inks are used extensively in a wide range of printed electronics because of their widespread availability, electrical conductivity and low cost. Overcoming the inherent tendency of the nano-carbon to agglomerate to form a stable dispersion is necessary if these inks are to be taken from the lab scale to industrial production. Plasma functionalization of graphite nanoplatelets (GNP) adds functional groups to their surface to improve their interaction with the polymer resin. This offers an attractive method to overcome these problems when creating next generation inks. Both dynamic and oscillatory rheology were used to evaluate the stability of inks made with different loadings of functionalized and unfunctionalized GNP in a thin resin, typical of a production ink. The rheology and the printability tests showed the same level of dispersion and electrical performance had been achieved with both functionalized and unfunctionalized GNPs. The unfunctionalized GNPs agglomerate to form larger, lower aspect particles, reducing interparticle interactions and particle–medium interactions. Over a 12-week period, the viscosity, shear thinning behavior and viscoelastic properties of the unfunctionalized GNP inks fell, with decreases in viscosity at 1.17 s−1 of 24, 30, 39% for the ϕ = 0.071, 0.098, 0.127 GNP suspensions, respectively. However, the rheological properties of the functionalized GNP suspensions remained stable as the GNPs interacted better with the polymer in the resin to create a steric barrier which prevented the GNPs from approaching close enough for van der Waals forces to be effective.


1986 ◽  
Vol 173 ◽  
pp. 431-471 ◽  
Author(s):  
J. S. Turner

The entrainment assumption, relating the inflow velocity to the local mean velocity of a turbulent flow, has been used successfully to describe natural phenomena over a wide range of scales. Its first application was to plumes rising in stably stratified surroundings, and it has been extended to inclined plumes (gravity currents) and related problems by adding the effect of buoyancy forces, which inhibit mixing across a density interface. More recently, the influence of viscosity differences between a turbulent flow and its surroundings has been studied. This paper surveys the background theory and the laboratory experiments that have been used to understand and quantify each of these phenomena, and discusses their applications in the atmosphere, the ocean and various geological contexts.


1966 ◽  
Vol 21 (4) ◽  
pp. 357-361 ◽  
Author(s):  
O. Drees ◽  
K. D. Demme

The intact virus particles of highly purified, concentrated suspensions of poliovirus have been disintegrated into free nucleic acid and empty protein shells (78 S protein) by moderate heat treatment at various temperatures and pH values. The kinetics of this degradation has been followed by ultracentrifugal analysis.With increasing temperature between 35° and 50 °C and with increasing pH of the suspension medium between 7 and 8, the rate of degradation increased. For any particular conditions the initial rate was not maintained, and after a certain time there was little further degradation if conditions remained unaltered. Some particles with the sedimentation characteristics of poliovirus were resistant to disintegration under the same conditions which led to the breakdown of the bulk of the virus. The proportion of this “stable fraction” varied within a wide range from one preparation to another and decreased with increasing temperature and with increasing pʜ.


1990 ◽  
Vol 217 ◽  
pp. 263-298 ◽  
Author(s):  
J. A. Stoos ◽  
L. G. Leal

Numerical solutions, obtained via the boundary-integral technique, are used to consider the effect of a linear axisymmetric straining flow on the existence of steady-state configurations in which a neutrally buoyant spherical particle straddles a gas–liquid interface. The problem is directly applicable to predictions of the stability of particle capture in flotation processes, and is also of interest in the context of contact angle and surface tension measurements. A primary goal of the present study is a determination of the critical capillary number, Cac, beyond which an initially captured particle is pulled from the interface by the flow, and the dependence of Cac on the equilibrium contact angle θc. We also present equilibrium configurations for a wide range of contact angles and subcritical capillary numbers.


Sign in / Sign up

Export Citation Format

Share Document