The evolution of the initial flow structures of a highly under-expanded circular jet

2019 ◽  
Vol 871 ◽  
pp. 305-331 ◽  
Author(s):  
Huan-Hao Zhang ◽  
Nadine Aubry ◽  
Zhi-Hua Chen ◽  
Wei-Tao Wu ◽  
Sha Sha

The three-dimensional flow characteristics of the compressible vortex ring generated by under-expanded circular jets with two typical pressure ratios, i.e. $n=1.4$ (moderate) and 4.0 (high), are investigated numerically with the use of large-eddy simulations. Our results illustrate that these two pressure ratios correspond to different shock structures (shock cell and Mach disc, respectively) within the jet. These two typical types of flow structures and characteristics are discussed and validated with experiments, and the different generation mechanisms of the secondary vortex rings are compared. Moreover, detailed information about the evolution of the secondary vortex ring, primary vortex ring and turbulence transition features, including the radial and azimuthal modes, is investigated. The geometric features and mixing effects of the jets are also explored.

2017 ◽  
Vol 833 ◽  
pp. 648-676 ◽  
Author(s):  
T. H. New ◽  
B. Zang

Vortical structures and behaviour associated with vortex-ring collisions upon round cylinders with different cylinder-to-vortex-ring diameter ratios were studied using laser-induced fluorescence and time-resolved particle-image velocimetry techniques. Circular vortex rings of Reynolds number 4000 and three diameter ratios of $D/d=1$, 2 and 4 were considered in the present investigation. Results reveal that the collision behaviour is very different from that associated with flat surfaces, in which vortex disconnection and reconnection processes caused by the strong interactions between primary and secondary vortex rings produce small-scale vortex ringlets that eject away from the cylinders. For the cylinder with the largest diameter ratio used here, these vortex ringlets move towards each other along the collision axis, where they eventually collide to produce a vortex dipole that propagates upstream. However, as the diameter ratio decreases, these vortex ringlets are produced further away from the collision axis, which results in them ejecting away from the cylinder at increasingly larger angles relative to the collision axis. Trajectories of key vortex cores were extracted from the experimental results to demonstrate quantitatively the strong sensitivity of these vortical motions upon the diameter ratio. Furthermore, significant differences in the primary vortex-ring circulation along convex surfaces and straight edges after the collisions are observed. In particular, vortex flow models are presented here to better illustrate the highly three-dimensional flow dynamics of the collision behaviour, as well as highlighting the strong dependency of the secondary vortex-ring formation, vortex disconnection/reconnection processes, and ejection of the resulting vortex ringlets upon the diameter ratio. As such, these results are expected to shed more light on the more general scenario of vortex-ring collisions upon arbitrarily contoured solid boundaries.


Author(s):  
Satoshi Fujita ◽  
Hirochika Tanigawa ◽  
Jiro Funaki ◽  
Katsuya Hirata

In this study, we numerically investigates the flow and thermal characteristics of the three-dimensional thermal convection in a cubic cavity heated below in the gravitational field, concerning about spatially-averaged kinetic energy K, Nusselt number Nu and flow structure. We assume Prandtl number Pr = 7.1 (water) and Rayleigh number Ra = 1.0×104 – 3.5×105. As a result, we have specified two of three important values of the Rayleigh number which demarcate different flow bifurcations and are referred to as the second and third critical Rayleigh numbers Rac2 and Rac3. We have found that Rac2 and Rac3 are roughly 2.6×105 and 3.1×105, respectively. We have observed a histerisis effect upon the value of Rac2 with chaotic behaviour at Ra ≈ Rac2, and revealed flow structures. In addition, we investigate the relationship between Ra and the oscillatory-convection frequency. The increasing rate of the Kmean with increasing Ra shows a different manner from that of Nuinflow-ave, mean. That is, the former is progressive and the latter is asymptotic, as Ra increases. Both the values of Kmean and Nuinflow-ave, mean in oscillatory flow tend to be smaller than those in steady flow, respectively. Then, there exist small jumps/drops of Kmean and Nuinflow-ave, mean at Ra = Rac2.


Water ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 1718
Author(s):  
Hasan Zobeyer ◽  
Abul B. M. Baki ◽  
Saika Nowshin Nowrin

The flow hydrodynamics around a single cylinder differ significantly from the flow fields around two cylinders in a tandem or side-by-side arrangement. In this study, the experimental results on the mean and turbulence characteristics of flow generated by a pair of cylinders placed in tandem in an open-channel flume are presented. An acoustic Doppler velocimeter (ADV) was used to measure the instantaneous three-dimensional velocity components. This study investigated the effect of cylinder spacing at 3D, 6D, and 9D (center to center) distances on the mean and turbulent flow profiles and the distribution of near-bed shear stress behind the tandem cylinders in the plane of symmetry, where D is the cylinder diameter. The results revealed that the downstream cylinder influenced the flow development between cylinders (i.e., midstream) with 3D, 6D, and 9D spacing. However, the downstream cylinder controlled the flow recirculation length midstream for the 3D distance and showed zero interruption in the 6D and 9D distances. The peak of the turbulent metrics generally occurred near the end of the recirculation zone in all scenarios.


Author(s):  
Irsalan Arif ◽  
Hassan Iftikhar ◽  
Ali Javed

In this article design and optimization scheme of a three-dimensional bump surface for a supersonic aircraft is presented. A baseline bump and inlet duct with forward cowl lip is initially modeled in accordance with an existing bump configuration on a supersonic jet aircraft. Various design parameters for bump surface of diverterless supersonic inlet systems are identified, and design space is established using sensitivity analysis to identify the uncertainty associated with each design parameter by the one-factor-at-a-time approach. Subsequently, the designed configurations are selected by performing a three-level design of experiments using the Box–Behnken method and the numerical simulations. Surrogate modeling is carried out by the least square regression method to identify the fitness function, and optimization is performed using genetic algorithm based on pressure recovery as the objective function. The resultant optimized bump configuration demonstrates significant improvement in pressure recovery and flow characteristics as compared to baseline configuration at both supersonic and subsonic flow conditions and at design and off-design conditions. The proposed design and optimization methodology can be applied for optimizing the bump surface design of any diverterless supersonic inlet system for maximizing the intake performance.


Fluids ◽  
2021 ◽  
Vol 6 (3) ◽  
pp. 105
Author(s):  
Ichiro Ueno

Coherent structures by the particles suspended in the half-zone thermocapillary liquid bridges via experimental approaches are introduced. General knowledge on the particle accumulation structures (PAS) is described, and then the spatial–temporal behaviours of the particles forming the PAS are illustrated with the results of the two- and three-dimensional particle tracking. Variations of the coherent structures as functions of the intensity of the thermocapillary effect and the particle size are introduced by focusing on the PAS of the azimuthal wave number m=3. Correlation between the particle behaviour and the ordered flow structures known as the Kolmogorov–Arnold—Moser tori is discussed. Recent works on the PAS of m=1 are briefly introduced.


Author(s):  
Chuang Jin ◽  
Giovanni Coco ◽  
Rafael O. Tinoco ◽  
Pallav Ranjan ◽  
Jorge San Juan ◽  
...  

2021 ◽  
Vol 62 (5) ◽  
Author(s):  
M. E. Morsy ◽  
J. Yang

Abstract Particle image velocimetry (PIV) has become a popular non-intrusive tool for measuring various types of flows. However, when measuring three-dimensional flows with two-dimensional (2D) PIV, there are some uncertainties in the measured velocity field due to out-of-plane motion, which might alter turbulence statistics and distort the overall flow characteristics. In the present study, three different turbulence models are employed and compared. Mean and fluctuating fields obtained by three-dimensional computational fluid dynamics modeling are compared to experimental data. Turbulence statistics such as integral length scale, Taylor microscale, Kolmogorov scale, turbulence kinetic energy, dissipation rate, and velocity correlations are calculated at different experimental conditions (i.e., pressure, temperature, fan speed, etc.). A reasonably isotropic and homogeneous turbulence with large turbulence intensities is achieved in the central region extending to almost 45 mm radius. This radius decreases with increasing the initial pressure. The influence of the third dimension velocity component on the measured characteristics is negligible. This is a result of the axisymmetric features of the flow pattern in the current vessel. The results prove that the present vessel can be conveniently adopted for several turbulent combustion studies including mainly the determination of turbulent burning velocity for gaseous premixed flames in nearly homogeneous isotropic turbulence. Graphic abstract


2013 ◽  
Vol 135 (3) ◽  
Author(s):  
Juan Du ◽  
Feng Lin ◽  
Jingyi Chen ◽  
Chaoqun Nie ◽  
Christoph Biela

Numerical simulations are carried out to investigate flow structures in the tip region for an axial transonic rotor, with careful comparisons with the experimental results. The calculated performance curve and two-dimensional (2D) flow structures observed at casing, such as the shock wave, the expansion wave around the leading edge, and the tip leakage flow at peak efficiency and near-stall points, are all captured by simulation results, which agree with the experimental data well. An in-depth analysis of three-dimensional flow structures reveals three features: (1) there exists an interface between the incoming main flow and the tip leakage flow, (2) in this rotor the tip leakage flows along the blade chord can be divided into at least two parts according to the blade loading distribution, and (3) each part plays a different role on the stall inception mechanism in the leakage flow dominated region. A model of three-dimensional flow structures of tip leakage flow is thus proposed accordingly. In the second half of this paper, the unsteady features of the tip leakage flows, which emerge at the operating points close to stall, are presented and validated with experiment observations. The numerical results in the rotor relative reference frame are first converted to the casing absolute reference frame before compared with the measurements in experiments. It is found that the main frequency components of simulation at absolute reference frame match well with those measured in the experiments. The mechanism of the unsteadiness and its significance to stability enhancement design are then discussed based on the details of the flow field obtained through numerical simulations.


Sign in / Sign up

Export Citation Format

Share Document