scholarly journals Formation of spiral waves in cylindrical containers under orbital excitation

2021 ◽  
Vol 925 ◽  
Author(s):  
G.M. Horstmann ◽  
S. Anders ◽  
D.H. Kelley ◽  
T. Weier

The lowest swirling wave mode arising in upright circular cylinders as a response to circular orbital excitation has been widely studied in the last decade, largely due to its high practical relevance for orbitally shaken bioreactors. Our recent theoretical study (Horstmann et al., J. Fluid Mech., vol. 891, 2020, A22) revealed a damping-induced symmetry breaking mechanism that can cause spiral wave structures manifested in the so far widely disregarded higher rotating wave modes. Building on this work, we develop a linear criterion describing the degree of spiralisation and classify different spiral regimes as a function of the most relevant dimensionless groups. The analysis suggests that high Bond numbers and shallow liquid layers favour the formation of coherent spiral waves. This result paved the way to find the predicted wave structures in our interfacial sloshing experiment. We present two sets of experiments, with different characteristic damping rates, verifying the formation of both coherent and overdamped spiral waves in conformity with the theoretical predictions.

2006 ◽  
Vol 06 (04) ◽  
pp. L379-L386
Author(s):  
STEVEN WU

We study defect-line dynamics in a 2-D spiral-wave pair in the Rössler model for its underlying local dynamics in period-N and chaotic regimes with a single bifurcation parameter κ. We find that a spiral wave pair is always stable across the period-doubling cascade and in the chaotic regime. When N ≥ 2 defect lines appear spontaneously and a loop exchange occurs across the defect line. There exists a "critical point" κ c below and above which the time-averaged total length of defect lines L converges to almost constant but different values L1 and L2. When κ > κ c defect lines show large fluctuations due to creation and annihilation processes.


Author(s):  
Shreyas Punacha ◽  
Sebastian Berg ◽  
Anupama Sebastian ◽  
Valentin I. Krinski ◽  
Stefan Luther ◽  
...  

Rotating spiral waves of electrical activity in the heart can anchor to unexcitable tissue (an obstacle) and become stable pinned waves. A pinned rotating wave can be unpinned either by a local electrical stimulus applied close to the spiral core, or by an electric field pulse that excites the core of a pinned wave independently of its localization. The wave will be unpinned only when the pulse is delivered inside a narrow time interval called the unpinning window (UW) of the spiral. In experiments with cardiac monolayers, we found that other obstacles situated near the pinning centre of the spiral can facilitate unpinning. In numerical simulations, we found increasing or decreasing of the UW depending on the location, orientation and distance between the pinning centre and an obstacle. Our study indicates that multiple obstacles could contribute to unpinning in experiments with intact hearts.


2018 ◽  
Author(s):  
Guy Malki ◽  
Sharon Zlochiver

ABSTRACTCardiac rotors are believed to be a major driver source of persistent atrial fibrillation (AF), and their spatiotemporal characterization is essential for successful ablation procedures. However, electrograms guided ablation have not been proven to have benefit over empirical ablation thus far, and there is a strong need of improving the localization of cardiac arrhythmogenic targets for ablation. A new approach for characterize rotors is proposed that is based on induced spatial temperature gradients (STGs), and investigated by theoretical study using numerical simulations. We hypothesize that such gradients will cause rotor drifting due to induced spatial heterogeneity in excitability, so that rotors could be driven towards the ablating probe. Numerical simulations were conducted in single cell and 2D atrial models using AF remodeled kinetics. STGs were applied either linearly on the entire tissue or as a small local perturbation, and the major ion channel rate constants were adjusted following Arrhenius equation. In the AF-remodeled single cell, recovery time increased exponentially with decreasing temperatures, despite the marginal effect of temperature on the action potential duration. In 2D models, spiral waves drifted with drifting velocity components affected by both temperature gradient direction and the spiral wave rotation direction. Overall, spiral waves drifted towards the colder tissue region associated with global minimum of excitability. A local perturbation with a temperature of T=28°C was found optimal for spiral wave attraction for the studied conditions. This work provides a preliminary proof-of-concept for a potential prospective technique for rotor attraction. We envision that the insights from this study will be utilize in the future in the design of a new methodology for AF characterization and termination during ablation procedures.


1999 ◽  
Vol 09 (05) ◽  
pp. 929-937 ◽  
Author(s):  
MARK A. PUSTOVOIT ◽  
VALERY I. SBITNEV

Intermittency of checkerboard spiral waves and traveling clusterings originating from sudden shrinking of the strange attractor of the 2D CML in the neighborhood of the saddle-node bifurcation boundary is found. A power-law probability density for lifetimes in the spiral wave (laminar) phase is observed, while in the checkerboard clusterings (bursting) phase the above quantity exhibits an exponential decay. This difference can be interpreted through the self-organized behavior of the spiral waves, and the passive relaxation of the disordered checkerboard clusterings.


2013 ◽  
Vol 10 (81) ◽  
pp. 20121016 ◽  
Author(s):  
Miriam Grace ◽  
Marc-Thorsten Hütt

In many biological systems, variability of the components can be expected to outrank statistical fluctuations in the shaping of self-organized patterns. In pioneering work in the late 1990s, it was hypothesized that a drift of cellular parameters (along a ‘developmental path’), together with differences in cell properties (‘desynchronization’ of cells on the developmental path) can establish self-organized spatio-temporal patterns (in their example, spiral waves of cAMP in a colony of Dictyostelium discoideum cells) starting from a homogeneous state. Here, we embed a generic model of an excitable medium, a lattice of diffusively coupled FitzHugh–Nagumo oscillators, into a developmental-path framework. In this minimal model of spiral wave generation, we can now study the predictability of spatio-temporal patterns from cell properties as a function of desynchronization (or ‘spread’) of cells along the developmental path and the drift speed of cell properties on the path. As a function of drift speed and desynchronization, we observe systematically different routes towards fully established patterns, as well as strikingly different correlations between cell properties and pattern features. We show that the predictability of spatio-temporal patterns from cell properties contains important information on the pattern formation process as well as on the underlying dynamical system.


2006 ◽  
Vol 16 (05) ◽  
pp. 1547-1555 ◽  
Author(s):  
I. V. BIKTASHEVA ◽  
A. V. HOLDEN ◽  
V. N. BIKTASHEV

Dynamics of spiral waves in perturbed, e.g. slightly inhomogeneous or subject to a small periodic external force, two-dimensional autowave media can be described asymptotically in terms of Aristotelean dynamics, so that the velocities of the spiral wave drift in space and time are proportional to the forces caused by the perturbation. The forces are defined as a convolution of the perturbation with the spirals Response Functions, which are eigenfunctions of the adjoint linearized problem. In this paper we find numerically the Response Functions of a spiral wave solution in the classic excitable FitzHugh–Nagumo model, and show that they are effectively localized in the vicinity of the spiral core.


2010 ◽  
Vol 18 (01) ◽  
pp. 243-259 ◽  
Author(s):  
JUN MA ◽  
AI-HUA ZHANG ◽  
JUN TANG ◽  
WU-YIN JIN

Collective behaviors of spiral waves in the networks of Hodgkin-Huxley neuron are investigated. A stable rotating spiral wave can be developed to occupy the quiescent areas in networks of neurons by selecting appropriate initial values for the variables in the networks of neurons. In our numerical studies, most neurons are quiescent and finite (few) numbers of neurons are selected with different values to form a spiral seed. In this way, neurons communicating are carried by propagating spiral wave to break through the quiescent domains (areas) in networks of neurons. The effect of membrane temperature on the formation of spiral wave is investigated by selecting different fixed membrane temperatures in the networks, and it is found that a spiral wave cannot be developed if the membrane temperature is close to a certain threshold. A quantitative factor of synchronization is defined to measure the statistical properties and collective behaviors of the spiral wave. And a distinct phase transition, which indicates the critical condition for spiral survival, is observed in the sudden changing point of the factors of synchronization curve vs. certain bifurcation parameter. Internal noise is introduced into ion channels (channel noise) with the Langevin method. It is found that a stable rotating spiral wave is developed and the spiral wave is robust to weak channel noise (the membrane patch is not small). The spiral wave can not grow up and the stable rotating spiral wave encounters instability in presence of strong channel noise. Coherence resonance-like behavior is observed in calculating the factors of synchronization in presence of channel noise.


2008 ◽  
Vol 295 (1) ◽  
pp. H297-H304 ◽  
Author(s):  
Liang Tang ◽  
Gyo-Seung Hwang ◽  
Hideki Hayashi ◽  
Juan Song ◽  
Masahiro Ogawa ◽  
...  

In vitro models of sustained monomorphic ventricular tachycardia (MVT) are rare and do not usually show spiral reentry on the epicardium. We hypothesized that MVT is associated with the spiral wave in the endocardium and that this stable reentrant propagation is supported by a persistently elevated intracellular calcium (Cai) transient at the core of the spiral wave. We performed dual optical mapping of transmembrane potential ( Vm) and Cai dynamics of the right ventricular (RV) endocardium in Langendorff-perfused rabbit hearts ( n = 12). Among 64 induced arrhythmias, 55% were sustained MVT (>10 min). Eighty percent of MVT showed stationary spiral waves (>10 cycles, cycle length: 128 ± 14.6 ms) in the endocardial mapped region, anchoring to the anatomic discontinuities. No reentry activity was observed in the epicardium. During reentry, the amplitudes of Vm and Cai signals were higher in the periphery and gradually decreased toward the core. At the core, maximal Vm and Cai amplitudes were 42.95 ± 5.89% and 43.95 ± 9.46%, respectively, of the control ( P < 0.001). However, the trough of the Vm and Cai signals at the core were higher than those in the periphery, indicating persistent Vm and Cai elevations during reentry. BAPTA-AM, a calcium chelator, significantly reduced the maximal Cai transient amplitude and prevented sustained MVT and spiral wave formation in the mapped region. These findings indicate that endocardial spiral waves often anchor to anatomic discontinuities causing stable MVT in normal rabbit ventricles. The spiral core is characterized by diminished Vm and Cai amplitudes and persistent Vm and Cai elevations during reentry.


Author(s):  
Samuel R Kuo ◽  
Natalia A Trayanova

Atrial fibrillation (AF) is believed to be perpetuated by recirculating spiral waves. Atrial structures are often characterized with action potentials of varying morphologies; however, the role of the structure-dependent atrial electrophysiological heterogeneity in spiral wave behaviour is not well understood. The purpose of this study is to determine the effect of action potential morphology heterogeneity associated with the major atrial structures in spiral wave maintenance. The present study also focuses on how this effect is further modulated by the presence of the inherent periodicity in atrial structure. The goals of the study are achieved through the simulation of electrical behaviour in a two-dimensional atrial tissue model that incorporates the representation of action potentials in various structurally distinct regions in the right atrium. Periodic boundary conditions are then imposed to form a cylinder (quasi three-dimensional), thus allowing exploration of the additional effect of structure periodicity on spiral wave behaviour. Transmembrane potential maps and phase singularity traces are analysed to determine effects on spiral wave behaviour. Results demonstrate that the prolonged refractoriness of the crista terminalis (CT) affects the pattern of spiral wave reentry, while the variation in action potential morphology of the other structures does not. The CT anchors the spiral waves, preventing them from drifting away. Spiral wave dynamics is altered when the ends of the sheet are spliced together to form a cylinder. The main effect of the continuous surface is the generation of secondary spiral waves which influences the primary rotors. The interaction of the primary and secondary spiral waves decreased as cylinder diameter increased.


Sign in / Sign up

Export Citation Format

Share Document