Spray dispersion regimes following atomization in a turbulent co-axial gas jet

2021 ◽  
Vol 932 ◽  
Author(s):  
P.D. Huck ◽  
R. Osuna-Orozco ◽  
N. Machicoane ◽  
A. Aliseda

A canonical co-axial round-jet two-fluid atomizer where atomization occurs over a wide range of momentum ratios: $M=1.9 - 376.4$ is studied. The near field of the spray, where the droplet formation process takes place, is characterized and linked to droplet dispersion in the far field of the jet. Counterintuitively, our results indicate that in the low-momentum regime, increasing the momentum in the gas phase leads to less droplet dispersion. A critical momentum ratio of the order of $M_c=50$ , that separates this regime from a high-momentum one with less dispersion, is found in both the near and far fields. A phenomenological model is proposed that determines the susceptibility of droplets to disperse beyond the nominal extent of the gas phase based on a critical Stokes number, $St=\tau _p/T_E=1.9$ , formulated based on the local Eulerian large scale eddy turnover time, $T_E$ , and the droplets’ response time, $\tau _p$ . A two-dimensional phase space summarizes the extent of these different regimes in the context of spray characteristics found in the literature.

2020 ◽  
Vol 17 (15) ◽  
pp. 3961-3989 ◽  
Author(s):  
Thomas A. M. Pugh ◽  
Tim Rademacher ◽  
Sarah L. Shafer ◽  
Jörg Steinkamp ◽  
Jonathan Barichivich ◽  
...  

Abstract. The length of time that carbon remains in forest biomass is one of the largest uncertainties in the global carbon cycle, with both recent historical baselines and future responses to environmental change poorly constrained by available observations. In the absence of large-scale observations, models used for global assessments tend to fall back on simplified assumptions of the turnover rates of biomass and soil carbon pools. In this study, the biomass carbon turnover times calculated by an ensemble of contemporary terrestrial biosphere models (TBMs) are analysed to assess their current capability to accurately estimate biomass carbon turnover times in forests and how these times are anticipated to change in the future. Modelled baseline 1985–2014 global average forest biomass turnover times vary from 12.2 to 23.5 years between TBMs. TBM differences in phenological processes, which control allocation to, and turnover rate of, leaves and fine roots, are as important as tree mortality with regard to explaining the variation in total turnover among TBMs. The different governing mechanisms exhibited by each TBM result in a wide range of plausible turnover time projections for the end of the century. Based on these simulations, it is not possible to draw robust conclusions regarding likely future changes in turnover time, and thus biomass change, for different regions. Both spatial and temporal uncertainty in turnover time are strongly linked to model assumptions concerning plant functional type distributions and their controls. Thirteen model-based hypotheses of controls on turnover time are identified, along with recommendations for pragmatic steps to test them using existing and novel observations. Efforts to resolve uncertainty in turnover time, and thus its impacts on the future evolution of biomass carbon stocks across the world's forests, will need to address both mortality and establishment components of forest demography, as well as allocation of carbon to woody versus non-woody biomass growth.


Author(s):  
Xiaodong Sun ◽  
Yang Liu ◽  
Basar Ozar ◽  
Mamoru Ishii ◽  
Joseph M. Kelly

To apply the two-fluid model to a wide range of flow regimes in gas-liquid two-phase flows, the gas phase is categorized into two groups: small spherical/distorted bubbles as Group 1 and large cap/slug/churn-turbulent bubbles as Group 2 in the modeling of interfacial area transport. The interfacial transfer terms of momentum and energy for the gas phase are then divided into two groups accordingly in the implementation of the two-group interfacial area transport equation to the two-fluid model. Thus, the drag coefficients and the interfacial heat transfer for each group bubbles need to be developed. An approach has been sought for evaluating the drag coefficients of each bubble group based on a comprehensive experimental data base obtained in air-water upward flows in various size round pipes. Comparisons have been made with the theory of the drag coefficients and it was found that the agreement is not very satisfactory although the general trends can be predicted by the current approach.


2009 ◽  
Vol 5 (H15) ◽  
pp. 767-767
Author(s):  
C. Pinte ◽  
F. Ménard ◽  
G. Duchěne ◽  
J. C. Augereau

A wide range of high-quality data is becoming available for protoplanetary disks. From these data sets many issues have already been addressed, such as constraining the large scale geometry of disks, finding evidence of dust grain evolution, as well as constraining the kinematics and physico-chemical conditions of the gas phase. Most of these results are based on models that emphasise fitting observations of either the dust component (SEDs or scattered light images or, more recently, interferometric visibilities), or the gas phase (resolved maps in molecular lines). In this contribution, we present a more global approach which aims at interpreting consistently the increasing amount of observational data in the framework of a single model, in order to to better characterize both the dust population and the gas disk properties, as well as their interactions. We present results of such modeling applied to a few disks (e.g. IM Lup, see Figure) with large observational data-sets available (scattered light images, polarisation maps, IR spectroscopy, X-ray spectrum, CO maps). These kinds of multi-wavelengths studies will become very powerful in the context of forthcoming instruments such as Herschel and ALMA.


2001 ◽  
Vol 449 ◽  
pp. 169-178 ◽  
Author(s):  
J. J. NIEMELA ◽  
L. SKRBEK ◽  
K. R. SREENIVASAN ◽  
R. J. DONNELLY

A large-scale circulation velocity, often called the ‘wind’, has been observed in turbulent convection in the Rayleigh–Bénard apparatus, which is a closed box with a heated bottom wall. The wind survives even when the dynamical parameter, namely the Rayleigh number, is very large. Over a wide range of time scales greater than its characteristic turnover time, the wind velocity exhibits occasional and irregular reversals without a change in magnitude. We study this feature experimentally in an apparatus of aspect ratio unity, in which the highest attainable Rayleigh number is about 1016. A possible physical explanation is attempted.


2003 ◽  
Vol 125 (4) ◽  
pp. 660-669 ◽  
Author(s):  
Venkatraman Iyer ◽  
John Abraham

A two fluid Eulerian-liquid Eulerian-gas (ELEG) model for diesel sprays is developed. It is employed to carry out computations for diesel sprays under a wide range of ambient and injection conditions. Computed and measured results are compared to assess the accuracy of the model in the far field, i.e., at axial distances greater than 300 orifice diameters, and in the near field, i.e., at axial distances less than 100 orifice diameters. In the far field, the comparisons are of drop mean velocities and drop fluctuation velocities and in the near field they are of entrainment velocities and entrainment constants. Adequate agreement is obtained quantitatively, within 30 percent, and qualitatively as parameters are changed. Unlike in traditional Lagrangian-drop Eulerian-fluid (LDEF) approaches that are employed for diesel spray computations, adequate resolution can be employed in the near field to achieve numerical grid independence when the two-fluid model is employed. A major source of uncertainty in the near field is in the modeling of liquid jet breakup and atomization.


2020 ◽  
Author(s):  
Thomas A. M. Pugh ◽  
Tim T. Rademacher ◽  
Sarah L. Shafer ◽  
Jörg Steinkamp ◽  
Jonathan Barichivich ◽  
...  

Abstract. The length of time that carbon remains in forest biomass is one of the largest uncertainties in the global carbon cycle, with both recent-historical baselines and future responses to environmental change poorly constrained by available observations. In the absence of large-scale observations, models tend to fall back on simplified assumptions of the turnover rates of biomass and soil carbon pools to make global assessments. In this study, the biomass carbon turnover times calculated by an ensemble of contemporary terrestrial biosphere models (TBMs) are analysed to assess their current capability to accurately estimate biomass carbon turnover times in forests and how these times are anticipated to change in the future. Modelled baseline 1985–2014 global forest biomass turnover times vary from 12.2 to 23.5 years between models. TBM differences in phenological processes, which control allocation to and turnover rate of leaves and fine roots, are as important as tree mortality with regard to explaining the variation in total turnover among TBMs. The different governing mechanisms exhibited by each TBM result in a wide range of plausible turnover time projections for the end of the century. Based on these simulations, it is not possible to draw robust conclusions regarding likely future changes in turnover time for different regions. Both spatial and temporal uncertainty in turnover time are strongly linked to model assumptions concerning plant functional type distributions and their controls. Twelve model-based hypotheses are identified, along with recommendations for pragmatic steps to test them using existing and novel observations, which would help to reduce both spatial and temporal uncertainty in turnover time. Efforts to resolve uncertainty in turnover time will need to address both mortality and establishment components of forest demography, as well as key drivers of demography such as allocation of carbon to woody versus non-woody biomass growth.


Author(s):  
V. C. Kannan ◽  
A. K. Singh ◽  
R. B. Irwin ◽  
S. Chittipeddi ◽  
F. D. Nkansah ◽  
...  

Titanium nitride (TiN) films have historically been used as diffusion barrier between silicon and aluminum, as an adhesion layer for tungsten deposition and as an interconnect material etc. Recently, the role of TiN films as contact barriers in very large scale silicon integrated circuits (VLSI) has been extensively studied. TiN films have resistivities on the order of 20μ Ω-cm which is much lower than that of titanium (nearly 66μ Ω-cm). Deposited TiN films show resistivities which vary from 20 to 100μ Ω-cm depending upon the type of deposition and process conditions. TiNx is known to have a NaCl type crystal structure for a wide range of compositions. Change in color from metallic luster to gold reflects the stabilization of the TiNx (FCC) phase over the close packed Ti(N) hexagonal phase. It was found that TiN (1:1) ideal composition with the FCC (NaCl-type) structure gives the best electrical property.


2019 ◽  
Author(s):  
Drew P. Harding ◽  
Laura J. Kingsley ◽  
Glen Spraggon ◽  
Steven Wheeler

The intrinsic (gas-phase) stacking energies of natural and artificial nucleobases were explored using density functional theory (DFT) and correlated ab initio methods. Ranking the stacking strength of natural nucleobase dimers revealed a preference in binding partner similar to that seen from experiments, namely G > C > A > T > U. Decomposition of these interaction energies using symmetry-adapted perturbation theory (SAPT) showed that these dispersion dominated interactions are modulated by electrostatics. Artificial nucleobases showed a similar stacking preference for natural nucleobases and were also modulated by electrostatic interactions. A robust predictive multivariate model was developed that quantitively predicts the maximum stacking interaction between natural and a wide range of artificial nucleobases using molecular descriptors based on computed electrostatic potentials (ESPs) and the number of heavy atoms. This model should find utility in designing artificial nucleobase analogs that exhibit stacking interactions comparable to those of natural nucleobases. Further analysis of the descriptors in this model unveil the origin of superior stacking abilities of certain nucleobases, including cytosine and guanine.


Author(s):  
О. Кravchuk ◽  
V. Symonenkov ◽  
I. Symonenkova ◽  
O. Hryhorev

Today, more than forty countries of the world are engaged in the development of military-purpose robots. A number of unique mobile robots with a wide range of capabilities are already being used by combat and intelligence units of the Armed forces of the developed world countries to conduct battlefield intelligence and support tactical groups. At present, the issue of using the latest information technology in the field of military robotics is thoroughly investigated, and the creation of highly effective information management systems in the land-mobile robotic complexes has acquired a new phase associated with the use of distributed information and sensory systems and consists in the transition from application of separate sensors and devices to the construction of modular information subsystems, which provide the availability of various data sources and complex methods of information processing. The purpose of the article is to investigate the ways to increase the autonomy of the land-mobile robotic complexes using in a non-deterministic conditions of modern combat. Relevance of researches is connected with the necessity of creation of highly effective information and control systems in the perspective robotic means for the needs of Land Forces of Ukraine. The development of the Armed Forces of Ukraine management system based on the criteria adopted by the EU and NATO member states is one of the main directions of increasing the effectiveness of the use of forces (forces), which involves achieving the principles and standards necessary for Ukraine to become a member of the EU and NATO. The inherent features of achieving these criteria will be the transition to a reduction of tasks of the combined-arms units and the large-scale use of high-precision weapons and land remote-controlled robotic devices. According to the views of the leading specialists in the field of robotics, the automation of information subsystems and components of the land-mobile robotic complexes can increase safety, reliability, error-tolerance and the effectiveness of the use of robotic means by standardizing the necessary actions with minimal human intervention, that is, a significant increase in the autonomy of the land-mobile robotic complexes for the needs of Land Forces of Ukraine.


1994 ◽  
Vol 29 (12) ◽  
pp. 149-156 ◽  
Author(s):  
Marcus Höfken ◽  
Katharina Zähringer ◽  
Franz Bischof

A novel agitating system has been developed which allows for individual or combined operation of stirring and aeration processes. Basic fluid mechanical considerations led to the innovative hyperboloid design of the stirrer body, which ensures high efficiencies in the stirring and the aeration mode, gentle circulation with low shear forces, excellent controllability, and a wide range of applications. This paper presents the basic considerations which led to the operating principle, the technical realization of the system and experimental results in a large-scale plant. The characteristics of the system and the differences to other stirring and aeration systems are illustrated. Details of the technical realization are shown, which conform to the specific demands of applications in the biological treatment of waste water. Special regard is given to applications in the upgrading of small compact waste water treatment plants.


Sign in / Sign up

Export Citation Format

Share Document