scholarly journals Investigation of the ice surface albedo in the Tibetan Plateau lakes based on the field observation and MODIS products

2018 ◽  
Vol 64 (245) ◽  
pp. 506-516 ◽  
Author(s):  
ZHAOGUO LI ◽  
YINHUAN AO ◽  
SHIHUA LYU ◽  
JIAHE LANG ◽  
LIJUAN WEN ◽  
...  

ABSTRACTThe Tibetan Plateau (TP) lakes are sensitive to climate change due to ice-albedo feedback, but almost no study has paid attention to the ice albedo of TP lakes and its potential impacts. Here we present a recent field experiment for observing the lake ice albedo in the TP, and evaluate the applicability of the Moderate Resolution Imaging Spectroradiometer (MODIS) products as well as ice-albedo parameterizations. Most of the observed lake ice albedos on TP are <0.12, and the clear blue ice albedo is only 0.075, much lower than reported in the previous studies. Even that of ice covered with snow patches is only 0.212. MOD10A1 albedo product has the best agreement with observations, followed by those of MYD10A1. MCD43A3 product is consistently higher than the observations. Due to an error of snow flag and inconsistent time windows in MCD43A2 and MCD43A3, at certain times, the albedo of the ice without snow is even higher than that covered with snow. When the solar zenith angle is not considered, there is no significant correlation between the albedo and the ice surface temperature. None of the existing ice-albedo parameterizations can reproduce well the observed relationship of the albedo and surface temperature.

2015 ◽  
Vol 8 (10) ◽  
pp. 4025-4041 ◽  
Author(s):  
H.-J. Kang ◽  
J.-M. Yoo ◽  
M.-J. Jeong ◽  
Y.-I. Won

Abstract. Uncertainties in the satellite-derived surface skin temperature (SST) data in the polar oceans during two periods (16–24 April and 15–23 September) 2003–2014 were investigated and the three data sets were intercompared as follows: MODerate Resolution Imaging Spectroradiometer Ice Surface Temperature (MODIS IST), the SST of the Atmospheric Infrared Sounder/Advanced Microwave Sounding Unit-A (AIRS/AMSU), and AIRS only. The AIRS only algorithm was developed in preparation for the degradation of the AMSU-A. MODIS IST was systematically warmer up to 1.65 K at the sea ice boundary and colder down to −2.04 K in the polar sea ice regions of both the Arctic and Antarctic than that of the AIRS/AMSU. This difference in the results could have been caused by the surface classification method. The spatial correlation coefficient of the AIRS only to the AIRS/AMSU (0.992–0.999) method was greater than that of the MODIS IST to the AIRS/AMSU (0.968–0.994). The SST of the AIRS only compared to that of the AIRS/AMSU had a bias of 0.168 K with a RMSE of 0.590 K over the Northern Hemisphere high latitudes and a bias of −0.109 K with a RMSE of 0.852 K over the Southern Hemisphere high latitudes. There was a systematic disagreement between the AIRS retrievals at the boundary of the sea ice, because the AIRS only algorithm utilized a less accurate GCM forecast over the seasonally varying frozen oceans than the microwave data. The three data sets (MODIS, AIRS/AMSU and AIRS only) showed significant warming rates (2.3 ± 1.7 ~ 2.8 ± 1.9 K decade−1) in the northern high regions (70–80° N) as expected from the ice-albedo feedback. The systematic temperature disagreement associated with surface type classification had an impact on the resulting temperature trends.


2021 ◽  
Author(s):  
Daniel Clarkson ◽  
Emma Eastoe ◽  
Amber Leeson

Abstract. The Greenland ice sheet has experienced significant melt over the past six decades, with extreme melt events covering large areas of the ice sheet. Melt events are typically analysed using summary statistics, but the nature and characteristics of the events themselves are less frequently analysed. Our work examines melt events from a statistical perspective by modelling 19 years of Moderate Resolution Imaging Spectroradiometer (MODIS) ice surface temperature data using a Gaussian mixture model. We use a mixture model with separate model components for ice and meltwater temperatures at 1139 locations spaced across the ice sheet. By considering the uncertainty of the ice surface temperature measurements, we use the two categories of model components to define a probability of melt for a given observation rather than using a fixed melt threshold. This probability can then be used to estimate the expected number of melt events at a given location. Furthermore, the model can be used to estimate temperature quantiles at a given location, and analyse temperature and melt trends over time by fitting the model to subsets of time. Fitting the model to data from 2001–2009 and 2010–2019 shows increases in melt probability for significant portions of the ice sheet, as well as the yearly expected maximum temperatures.


2020 ◽  
Vol 12 (7) ◽  
pp. 1133
Author(s):  
Yufan Qie ◽  
Ninglian Wang ◽  
Yuwei Wu ◽  
An’an Chen

In the context of global warming, the land surface temperature (LST) from remote sensing data is one of the most useful indicators to directly quantify the degree of climate warming in high-altitude mountainous areas where meteorological observations are sparse. Using the daily Moderate Resolution Imaging Spectroradiometer (MODIS) LST product (MOD11A1 V6) after eliminating pixels that might be contaminated by clouds, this paper analyzes temporal and spatial variations in the mean LST on the Purog Kangri ice field, Qinghai–Tibetan Plateau, in winter from 2001 to 2018. There was a large increasing trend in LST (0.116 ± 0.05 °C·a−1) on the Purog Kangri ice field during December, while there was no evident LST rising trend in January and February. In December, both the significantly decreased albedo (−0.002 a−1, based on the MOD10A1 V6 albedo product) on the ice field surface and the significantly increased number of clear days (0.322 d·a−1) may be the main reason for the significant warming trend in the ice field. In addition, although the two highest LST of December were observed in 2017 and 2018, a longer data set is needed to determine whether this is an anomaly or a hint of a warmer phase of the Purog Kangri ice field in December.


2016 ◽  
Vol 57 (71) ◽  
pp. 140-154 ◽  
Author(s):  
Marinka Spiess ◽  
Christoph Schneider ◽  
Fabien Maussion

Abstract.Using the Moderate Resolution Imaging Spectroradiometer (MODIS) Level 1 radiance Swath Data (MOD02QKM) with a spatial resolution of 250 m, we derive snowlines during July–September 2001–12 for several mountain ranges distributed across the Tibetan Plateau (TP). Radiance bands 1 and 2 are projected to the study area and processed automatically. The discrimination between snow and ice is done using a k-mean cluster analysis and the snowlines are delineated based on a fixed percentile of the snow-cover altitude. The highest transient snowline altitude is then taken as a proxy for the equilibrium-line altitude (ELA). In the absence of measured glaciological, meteorological or hydrological data, our ELA time series enable better understanding of atmosphere-cryosphere couplings on the TP. Interannual ELA variability is linked to local and remote climate indices using a correlation analysis. Southerly flow and higher temperatures are linked with a higher ELA in most regions. Eastern and Trans-Himalayan sites show positive correlations between winter temperatures and ELA. As winter temperatures are substantially below zero, this suggests an enhancement of winter sublimation as opposed to a reduction in accumulation. It appears that large-scale atmospheric forcing has varying and sometimes opposite influences on the annual ELA in different regions on the TP.


2015 ◽  
Vol 8 (5) ◽  
pp. 4451-4488
Author(s):  
H.-J. Kang ◽  
J.-M. Yoo ◽  
M.-J. Jeong ◽  
Y.-I. Won

Abstract. Uncertainties in the satellite-derived Surface Skin Temperature (SST) data in the polar oceans during two periods (16–24 April and 15–23 September) of 2003–2014 were investigated and the three datasets were intercompared as follows: MODerate Resolution Imaging Spectroradiometer Ice Surface Temperature (MODIS IST), the SST of the Atmospheric Infrared Sounder/Advanced Microwave Sounding Unit-A (AIRS/AMSU), and AIRS only. AIRS only algorithm was developed in preparation for the degradation of the AMSU-A. MODIS IST was systematically up to 1.65 K warmer at the sea ice boundary and up to 2.04 K colder in the polar sea ice regions of both the Arctic and Antarctic than that of the AIRS/AMSU. This difference in the results could have been caused by the surface classification method. The spatial correlation coefficient of the AIRS only to the AIRS/AMSU (0.992–0.999) method was greater than that of the MODIS IST to the AIRS/AMSU (0.968–0.994). The SST of the AIRS only compared to that of the AIRS/AMSU had a bias of 0.168 K with a RMSE of 0.590 K over the Northern Hemisphere high latitudes and a bias of −0.109 K with a RMSE of 0.852 K over the Southern Hemisphere high latitudes. There was a systematic disagreement between the AIRS retrievals at the boundary of the sea ice, because the AIRS only algorithm utilized a~less accurate GCM forecast over the seasonally-varying frozen oceans than the microwave data. The three datasets (MODIS, AIRS/AMSU and AIRS only) showed significant warming rates (2.3 ± 1.7 ~2.8 ± 1.9 K decade−1) in the northern high latitude regions (70–80° N) as expected from the ice-albedo feedback. The systematic temperature disagreement associated with surface type classification had an impact on the resulting temperature trends.


2016 ◽  
Author(s):  
Hongbo Zhang ◽  
Fan Zhang ◽  
Guoqing Zhang ◽  
Xiaobo He ◽  
Lide Tian

Abstract. Moderate Resolution Imaging Spectroradiometer (MODIS) land surface temperature (LST) data have played a significant role in estimating the air temperature (Tair) due to the sparseness of ground measurements, especially for remote mountainous areas. Generally, two types of air temperatures are studied including daily maximum (Tmax) and minimum (Tmin) air temperatures. MODIS daytime and nighttime LST are often used as proxies for estimating Tmax and Tmin, respectively. The Tibetan Plateau (TP) has a high daily cloud cover fraction (> 45 %). The presence of clouds can affect the relationship between Tair and LST and can further affect the estimation accuracies. This study comprehensively analyzes the effects of clouds on Tair estimation based on MODIS LST using detailed half-hourly ground measurements and daily meteorological station observations collected from over the TP. Comparisons made between in-situ cloudiness observations and MODIS claimed clear-sky records show that erroneous rates of MODIS nighttime cloud detection are obviously higher than those achieved in daytime. Our validation of the MODIS LST values under different cloudiness constraining conditions shows that the accuracy of MODIS nighttime LST is severely affected by undetected clouds. Large errors introduced by undetected clouds are found to significantly affect the Tmin estimations based on nighttime LST through cloud effect tests. However, clouds are mainly found to affect Tmax estimation by affecting the essential relationship between Tmax and daytime LST. The obviously larger errors of Tmax estimation than those of Tmin could be attributed to larger MODIS daytime LST errors resulting from higher degrees of daytime LST heterogeneity within MODIS pixel than those of nighttime LST. Constraining all four MODIS observations per day to non-cloudy observations can efficiently screen samples to build a strong fit of Tmin estimation using MODIS nighttime LST. The present study reveals the effects of clouds on Tair estimation through MODIS LST and will thus help improve the estimation accuracy levels while alleviating the problems associated with severe data sparseness over the TP.


2021 ◽  
Vol 13 (8) ◽  
pp. 1418
Author(s):  
Wenjing Xu ◽  
Daren Lyu

The Tibetan Plateau (TP) has profound thermal and dynamic influences on the atmospheric circulation, energy, and water cycles of the climate system, which make the clouds over the TP the forefront of atmospheric and climate science. However, the highest altitude and most complex terrain of the TP make the retrieval of cloud properties challenging. In order to understand the performance and limitations of cloud retrievals over the TP derived from the state-of-the-art Advanced Geosynchronous Radiation Imager (AGRI) onboard the new generation of Chinese Geostationary (GEO) meteorological satellites Fengyun-4 (FY-4), a three-month comparison was conducted between FY-4A/AGRI and the Moderate Resolution Imaging Spectroradiometer (MODIS) for both cloud detection and cloud top height (CTH) pixel-level retrievals. For cloud detection, the AGRI and MODIS cloud mask retrievals showed a fractional agreement of 0.93 for cloudy conditions and 0.73 for clear scenes. AGRI tended to miss lower CTH clouds due to the lack of thermal contrast between the clouds and the surface of the TP. For cloud top height retrievals, the comparison showed that on average, AGRI underestimated the CTH relative to MODIS by 1.366 ± 2.235 km, and their differences presented a trend of increasing with height.


2018 ◽  
Vol 10 (10) ◽  
pp. 1641 ◽  
Author(s):  
Justin Murfitt ◽  
Laura Brown ◽  
Stephen Howell

Lake ice is an important component in understanding the local climate as changes in temperature have an impact on the timing of key ice phenology events. In recent years, there has been a decline in the in-situ monitoring of lake ice events in Canada and microwave remote sensing imagery from synthetic aperture radar (SAR) is more widely used due to the high spatial resolution and response of backscatter to the freezing and melting of the ice surface. RADARSAT-2 imagery was used to develop a threshold-based method for determining lake ice events for mid-latitude lakes in Central Ontario from 2008 to 2017. Estimated lake ice phenology events are validated with ground-based observations and are compared against the Moderate Resolution Imaging Spectroradiometer (MODIS band 2). The threshold-based method was found to accurately identify 12 out of 17 freeze events and 13 out of 17 melt events from 2015–2017 when compared to ground-based observations. Mean absolute errors for freeze events ranged from 2.5 to 10.0 days when compared to MODIS imagery while the mean absolute error for water clear of ice (WCI) ranged from 1.5 to 7.1 days. The method is important for the study of mid-latitude lake ice due to its unique success in detecting multiple freeze and melting events throughout the ice season.


Sign in / Sign up

Export Citation Format

Share Document