scholarly journals Dark Ages woodland recovery and the expansion of beech: a study of land use changes and related woodland dynamics during the Roman to Medieval transition period in northern Belgium

Author(s):  
Koen Deforce ◽  
Jan Bastiaens ◽  
Philippe Crombé ◽  
Ewoud Deschepper ◽  
Kristof Haneca ◽  
...  

Abstract The results from analyses of botanical remains (pollen, wood, charcoal, seeds) from several archaeological features excavated in Kluizen (northern Belgium) are presented. The region was largely uninhabited until the Iron Age and Roman period when a rural settlement was established, resulting in small-scale woodland clearance. The site was subsequently abandoned from c. AD 270 till the High Middle Ages. The results of the archaeological and archaeobotanical analyses provide information on changes in land use and resulting dynamics of woodland cover and composition between c.600 BC and AD 1200, with a spatial and temporal resolution unrivalled in northern Belgium. Especially the long period of woodland regeneration following abandonment of the site around AD 270, covering the Late Roman and Early Medieval period, could be reconstructed in detail. Abandoned fields were first covered with pioneer woodland (Salix, Corylus and Betula), then Quercus-dominated secondary forest and finally a late-successional forest with Fagus sylvatica, Carpinus betulus and Ilex aquifolium, an evolution that took over 300 years. The results also indicate that the observed increase of Fagus during the Early Middle Ages, which was never an important element in the woodland vegetation in northern Belgium before, was related to climatic changes rather than anthropogenic factors.

Hydrology ◽  
2021 ◽  
Vol 8 (3) ◽  
pp. 102
Author(s):  
Frauke Kachholz ◽  
Jens Tränckner

Land use changes influence the water balance and often increase surface runoff. The resulting impacts on river flow, water level, and flood should be identified beforehand in the phase of spatial planning. In two consecutive papers, we develop a model-based decision support system for quantifying the hydrological and stream hydraulic impacts of land use changes. Part 1 presents the semi-automatic set-up of physically based hydrological and hydraulic models on the basis of geodata analysis for the current state. Appropriate hydrological model parameters for ungauged catchments are derived by a transfer from a calibrated model. In the regarded lowland river basins, parameters of surface and groundwater inflow turned out to be particularly important. While the calibration delivers very good to good model results for flow (Evol =2.4%, R = 0.84, NSE = 0.84), the model performance is good to satisfactory (Evol = −9.6%, R = 0.88, NSE = 0.59) in a different river system parametrized with the transfer procedure. After transferring the concept to a larger area with various small rivers, the current state is analyzed by running simulations based on statistical rainfall scenarios. Results include watercourse section-specific capacities and excess volumes in case of flooding. The developed approach can relatively quickly generate physically reliable and spatially high-resolution results. Part 2 builds on the data generated in part 1 and presents the subsequent approach to assess hydrologic/hydrodynamic impacts of potential land use changes.


The Holocene ◽  
2019 ◽  
Vol 29 (4) ◽  
pp. 543-564 ◽  
Author(s):  
Renata Kołodyńska-Gawrysiak

Past Pleistocene topography of the loess uplands is rich in local sinks (closed depressions (CDs)) influencing sediment fluxes. Soil-sediment sequences from CDs constituting geoarchives where landscape changes under natural and anthropogenic conditions have been recorded. Pedo-sedimentary archives from 10 CDs in the Polish loess belt and human settlements were analysed. Phases of the Holocene evolution of the CDs were correlated with landscape dynamics in loess areas in Poland and Central Europe. Phases of infilling of CDs occurring (2) from the late Boreal/early Atlantic Period until the (middle) late Bronze Age/early Iron Age and (4) since the early Middle Ages until today were documented. These were phases of long-term soil erosion and colluviation corresponding to the increasing agricultural land use of Polish loess uplands. Phases of soil formation related to geomorphic stabilization of CDs occurred (1) from the late Vistulian until the late Boreal/early Atlantic Period and (3) from the late Bronze Age/early Iron Age until the early/high Middle Ages. These were phases of decreased soil erosion and landform conservation in a considerable part of Poland’s loess areas. Pedo-sedimentary archives from the CDs have recorded soil erosion strongly related with human-induced land-use changes. The mean soil erosion rate in the catchment of CDs was 0.33 t·ha−1·yr−1 during prehistory and 4.0 t·ha−1·yr−1 during the last approximately 1000 years. Phases of CD evolution are representative for the main phases of sediment and landscape dynamics in Poland’s loess areas recorded in various archives, and are not synchronous with some of these phases in Central Europe.


Forests ◽  
2018 ◽  
Vol 9 (11) ◽  
pp. 701 ◽  
Author(s):  
Lorenzo Sallustio ◽  
Marco di Cristofaro ◽  
Maaz Hashmi ◽  
Matteo Vizzarri ◽  
Tommaso Sitzia ◽  
...  

Land use by humans strongly alters the landscape mosaic, either by reducing or increasing its heterogeneity. One of the most recent and widespread land use changes in Europe has been the spontaneous reforestation of marginal agricultural lands. These primarily affected small landscape patches, such as trees outside forests (TOF) and small open areas (SOA), often represent the most diversifying features of landscape’ structures. Nevertheless, only small-scale studies can be found in the literature and thus it remains a relatively unexplored issue. Integrating inventory and cartographic approaches, this work assesses changes in abundance, coverage, and average size of small patches in Italy between 1990 and 2013. Main results showed an overall increase in number and coverage of small patches during the reference period. The average patch size remains unaltered for TOF but decreases significantly for SOA, due to trees encroachment and canopy cover increasing in forests. Our findings confirm the important changes in Mediterranean land mosaics and contribute to a better understanding of current conditions and recent trends regarding TOF and SOA. The integrated approach has proven to be helpful for the large-scale assessment of small patches dynamics, representing a viable monitoring tool to encourage the inclusion of small patches in landscape policy and planning.


2018 ◽  
Vol 5 (5) ◽  
pp. 171624 ◽  
Author(s):  
Jessica Henkner ◽  
Jan Ahlrichs ◽  
Sean Downey ◽  
Markus Fuchs ◽  
Bruce James ◽  
...  

Colluvial deposits, as the correlate sediments of human-induced soil erosion, depict an excellent archive of land use and landscape history as indicators of human–environment interactions. This study establishes a chronostratigraphy of colluvial deposits and reconstructs past land use dynamics in the Swabian Jura, the Baar and the Black Forest in SW Germany. In the agriculturally favourable Baar area multiple main phases of colluvial deposition, and thus intensified land use, can be identified from the Neolithic to the Modern times. In the unfavourable Swabian Jura increased colluvial deposition began later compared to the more favourable areas in the Baar. The same holds true for the unfavourable areas of the Black Forest, but intensified land use can only be reconstructed for the Middle Ages and Early Modern times instead of for the Bronze and Iron Age as in the Swabian Jura. Land use intensity and settlement dynamics represented by thick, multilayered colluvial deposits increase in the Baar and the Black Forest during the Middle Ages. In between those phases of geomorphodynamic activity and colluviation, stable phases occur, interpreted as phases with sustainable land use or without human presence.


2013 ◽  
Vol 10 (10) ◽  
pp. 6323-6337 ◽  
Author(s):  
S. J. Smith ◽  
A. Rothwell

Abstract. We examine historical and future land-use emissions using a simple mechanistic carbon-cycle model with regional and ecosystem specific parameterizations. We use the latest gridded data for historical and future land-use changes, which includes estimates for the impact of forest harvesting and secondary forest regrowth. Our central estimate of net terrestrial land-use change emissions, exclusive of climate–carbon feedbacks, is 250 GtC over the last 300 yr. This estimate is most sensitive to assumptions for preindustrial forest and soil carbon densities. We also find that land-use change emissions estimates are sensitive to the treatment of crop and pasture lands. These sensitivities also translate into differences in future terrestrial uptake in the RCP (representative concentration pathway) 4.5 land-use scenario. The estimate of future uptake obtained here is smaller than the native values from the GCAM (Global Change Assessment Model) integrated assessment model result due to lower net reforestation in the RCP4.5 gridded land-use data product.


2020 ◽  
Author(s):  
Giorgi Kirkitadze ◽  
Mikheil Elashvili ◽  
Levan Navrozashvili ◽  
Mikheil Lobjanidze ◽  
Levan Losaberidze ◽  
...  

<p>Studying of the interactions between past environmental changes and former human societies delivers key information to understand the future evolution of landscapes under changing environmental conditions and increasing human stress. The combination of these two factors is especially critical for fragile landscapes such as drylands, where even small-scale climatic or anthropogenic factors can have relatively large effects on the landscape dynamics.</p><p>Holocene paleoenvironmental changes on the Shiraki Plain, located in Eastern Georgia (South Caucasus), were studied. The selected site is characterized by semiarid climate conditions (annual precipitation <500 mm per year) and an open dry steppic landscape today. Currently the area is devoid of settlements, due to absence of water resources. However, recent archaeological data collected using remote sensing and ground-proven by ongoing archaeological excavations, delivered evidences of an active former human inhabitation of this area mostly during the Late Bronze - Early Iron Ages. Several large, city-type settlements of the given period that were identified on the Shiraki Plain suggest the existence of early state formation under favorable environmental conditions.</p><p>During the conducted study we have combined stratigraphical-sedimentological investigations of sediments using drilling cores, trenches and laboratory analyses with high-resolution D-GPS measurements in the RTK mode, remote sensing using drone photogrammetric surveys, paleoecological investigations, and hydrological modeling. Our initial results clearly support the hypothesis of a large shallow lake in the center of the Shiraki Plain that was surrounded by the Late Bronze and Early Iron Age settlements. Therefore, the regional water balance of that period was obviously more positive than today. Furthermore, our investigations indicate that this period of high settlement intensity was characterized by intensive soil erosion processes that washed away the dominant Chernozem soils.</p><p>Altogether, our investigations suggest a tipping point of the landscape evolution dynamics that must have been crossed during the Late Bronze and Early Iron period, leading to the current dry steppic landscape. This also provides key information to reconstruct the archaeological past of the region, and to address the main question of rapid depopulation and further abandonment of this area.</p>


2018 ◽  
Vol 7 (3.14) ◽  
pp. 55
Author(s):  
Mohd Khairul Amri Kamarudin ◽  
Noorjima Abd. Wahab ◽  
Ahmad Fadhli Mamat ◽  
Hafizan Juahir ◽  
Mohd Ekhwan Toriman ◽  
...  

Kenyir Lake’s natural environment experienced significant changes over the past 20 years. Pressure from anthropogenic activities such as deforestation, construction, and sand mining around Sungai Terengganu, tourism, farming and agricultural has creating imbalance between environmental processes and response in Kenyir Lake. The aim of the study is to estimate the production of sediment yield (Muatan Sedimen) (MS) (tonnes/km2/year) in Kenyir Lake Basin. 21 sampling stations were chosen along Kenyir Lake to represent the upstream and downstream. The statistical analysis proved that the correlation and regression relationship between Total Suspended Solid (TSS), MS and area of catchment. MS showed a weak correlation and insignificant relationship of regression caused by the anthropogenic factors and uncertain climate changes. These sedimentation problems due to unsustainable land use changes, river bank erosion problems and active construction activity around the Kenyir Lake Basin. This study suggests the sedimentation management methods including land use settlement, cliff erosion problems, settlement and negotiable of uncontrolled development operations in Kenyir Lake and the integrated of river and lake management methods based on Integrated River Basin Management (IRBM) in Kenyir Lake Basin is recommended.  


2018 ◽  
Vol 10 (8) ◽  
pp. 2759 ◽  
Author(s):  
Songtang He ◽  
Daojie Wang ◽  
Yong Li ◽  
Peng Zhao

Land use change is extremely sensitive to natural factors and human influence in active debris flow. It is therefore necessary to determine the factors that influence land use change. This paper took Wudu District, Gansu Province, China as a study area, and a systemic analysis of the transformational extent and rate of debris flow waste-shoal land (DFWSL) was carried out from 2005 to 2015. The results show that from 2005 to 2015, cultivated land resources transformed to other types of land; cultivated lands mainly transformed to grassland from 2005 to 2010 and construction land from 2010 to 2015. Moreover, the growth rate of construction land from 2005 to 2010 was only 0.11%, but increased to 6.87% between 2010 and 2015. The latter is more than 60 times the former. This increase was brought about by natural disasters (debris flow, earthquakes, and landslides) and anthropogenic factors (national policies or strategies), which acted as driving forces in debris flow area. The former determines the initial use type of the DFWSL while the latter only affects the direction of land use and transformation.


Sign in / Sign up

Export Citation Format

Share Document