scholarly journals Evaluating the Contribution of Trees outside Forests and Small Open Areas to the Italian Landscape Diversification during the Last Decades

Forests ◽  
2018 ◽  
Vol 9 (11) ◽  
pp. 701 ◽  
Author(s):  
Lorenzo Sallustio ◽  
Marco di Cristofaro ◽  
Maaz Hashmi ◽  
Matteo Vizzarri ◽  
Tommaso Sitzia ◽  
...  

Land use by humans strongly alters the landscape mosaic, either by reducing or increasing its heterogeneity. One of the most recent and widespread land use changes in Europe has been the spontaneous reforestation of marginal agricultural lands. These primarily affected small landscape patches, such as trees outside forests (TOF) and small open areas (SOA), often represent the most diversifying features of landscape’ structures. Nevertheless, only small-scale studies can be found in the literature and thus it remains a relatively unexplored issue. Integrating inventory and cartographic approaches, this work assesses changes in abundance, coverage, and average size of small patches in Italy between 1990 and 2013. Main results showed an overall increase in number and coverage of small patches during the reference period. The average patch size remains unaltered for TOF but decreases significantly for SOA, due to trees encroachment and canopy cover increasing in forests. Our findings confirm the important changes in Mediterranean land mosaics and contribute to a better understanding of current conditions and recent trends regarding TOF and SOA. The integrated approach has proven to be helpful for the large-scale assessment of small patches dynamics, representing a viable monitoring tool to encourage the inclusion of small patches in landscape policy and planning.

Hydrology ◽  
2021 ◽  
Vol 8 (3) ◽  
pp. 102
Author(s):  
Frauke Kachholz ◽  
Jens Tränckner

Land use changes influence the water balance and often increase surface runoff. The resulting impacts on river flow, water level, and flood should be identified beforehand in the phase of spatial planning. In two consecutive papers, we develop a model-based decision support system for quantifying the hydrological and stream hydraulic impacts of land use changes. Part 1 presents the semi-automatic set-up of physically based hydrological and hydraulic models on the basis of geodata analysis for the current state. Appropriate hydrological model parameters for ungauged catchments are derived by a transfer from a calibrated model. In the regarded lowland river basins, parameters of surface and groundwater inflow turned out to be particularly important. While the calibration delivers very good to good model results for flow (Evol =2.4%, R = 0.84, NSE = 0.84), the model performance is good to satisfactory (Evol = −9.6%, R = 0.88, NSE = 0.59) in a different river system parametrized with the transfer procedure. After transferring the concept to a larger area with various small rivers, the current state is analyzed by running simulations based on statistical rainfall scenarios. Results include watercourse section-specific capacities and excess volumes in case of flooding. The developed approach can relatively quickly generate physically reliable and spatially high-resolution results. Part 2 builds on the data generated in part 1 and presents the subsequent approach to assess hydrologic/hydrodynamic impacts of potential land use changes.


Author(s):  
Jane J. Aggrey ◽  
Mirjam A. F. Ros-Tonen ◽  
Kwabena O. Asubonteng

AbstractArtisanal and small-scale mining (ASM) in sub-Saharan Africa creates considerable dynamics in rural landscapes. Many studies addressed the adverse effects of mining, but few studies use participatory spatial tools to assess the effects on land use. Hence, this paper takes an actor perspective to analyze how communities in a mixed farming-mining area in Ghana’s Eastern Region perceive the spatial dynamics of ASM and its effects on land for farming and food production from past (1986) to present (2018) and toward the future (2035). Participatory maps show how participants visualize the transformation of food-crop areas into small- and large-scale mining, tree crops, and settlement in all the communities between 1986 and 2018 and foresee these trends to continue in the future (2035). Participants also observe how a mosaic landscape shifts toward a segregated landscape, with simultaneous fragmentation of their farming land due to ASM. Further segregation is expected in the future, with attribution to the expansion of settlements being an unexpected outcome. Although participants expect adverse effects on the future availability of food-crop land, no firm conclusions can be drawn about the anticipated effect on food availability. The paper argues that, if responsibly applied and used to reveal community perspectives and concerns about landscape dynamics, participatory mapping can help raise awareness of the need for collective action and contribute to more inclusive landscape governance. These findings contribute to debates on the operationalization of integrated and inclusive landscape approaches and governance, particularly in areas with pervasive impacts of ASM.


Author(s):  
Hui Wei ◽  
Wenwu Zhao ◽  
Han Wang

Large-scale vegetation restoration greatly changed the soil erosion environment in the Loess Plateau since the implementation of the “Grain for Green Project” (GGP) in 1999. Evaluating the effects of vegetation restoration on soil erosion is significant to local soil and water conservation and vegetation construction. Taking the Ansai Watershed as the case area, this study calculated the soil erosion modulus from 2000 to 2015 under the initial and current scenarios of vegetation restoration, using the Chinese Soil Loess Equation (CSLE), based on rainfall and soil data, remote sensing images and socio-economic data. The effect of vegetation restoration on soil erosion was evaluated by comparing the average annual soil erosion modulus under two scenarios among 16 years. The results showed: (1) vegetation restoration significantly changed the local land use, characterized by the conversion of farmland to grassland, arboreal land, and shrub land. From 2000 to 2015, the area of arboreal land, shrub land, and grassland increased from 19.46 km2, 19.43 km2, and 719.49 km2 to 99.26 km2, 75.97 km2, and 1084.24 km2; while the farmland area decreased from 547.90 km2 to 34.35 km2; (2) the average annual soil erosion modulus from 2000 to 2015 under the initial and current scenarios of vegetation restoration was 114.44 t/(hm²·a) and 78.42 t/(hm²·a), respectively, with an average annual reduction of 4.81 × 106 t of soil erosion amount thanks to the vegetation restoration; (3) the dominant soil erosion intensity changed from “severe and light erosion” to “moderate and light erosion”, vegetation restoration greatly improved the soil erosion environment in the study area; (4) areas with increased erosion and decreased erosion were alternately distributed, accounting for 48% and 52% of the total land area, and mainly distributed in the northwest and southeast of the watershed, respectively. Irrational land use changes in local areas (such as the conversion of farmland and grassland into construction land, etc.) and the ineffective implementation of vegetation restoration are the main reasons leading to the existence of areas with increased erosion.


2021 ◽  
Vol 101 (1) ◽  
pp. 31-47
Author(s):  
Marko Langovic ◽  
Slavoljub Dragicevic ◽  
Ivan Novkovic ◽  
Nenad Zivkovic ◽  
Radislav Tosic ◽  
...  

Riverbank erosion and lateral channel migration are important geomorphological processes which cause various landscape, socio-economic, and environmental consequences. Although those processes are present on the territory of Serbia, there is no available data about the soil loss caused by riverbank erosion for the entire country. In this study, the spatial and temporal dynamics of the riverbank erosion for the largest internal rivers in Serbia (Velika Morava, Zapadna Morava, Juzna Morava, Pek, Mlava, Veliki Timok, Kolubara) was assessed using remote sensing and GIS. The aim of this paper is to determine the total and average soil loss over large-scale periods (1923-2020), comparing data from the available sources (aerial photographs, satellite images, and different scale paper maps). Results indicated that lateral migration caused significant problems through land loss (approximately 2,561 ha), especially arable land, and land use changes in river basins, but also economic loss due to the reduction of agricultural production. Total and average soil loss was calculated for five most representative meanders on all studied rivers, and on the basis of the obtained values, certain regularities about further development and dynamics of riverbank movement are presented. A better understanding of river channel migration in this area will be of a great importance for practical issues such as predicting channel migration rates for river engineering and planning purposes, soil and water management and land use changes, environment protection.


SPE Journal ◽  
2019 ◽  
Vol 24 (04) ◽  
pp. 1508-1525
Author(s):  
Mengbi Yao ◽  
Haibin Chang ◽  
Xiang Li ◽  
Dongxiao Zhang

Summary Naturally or hydraulically fractured reservoirs usually contain fractures at various scales. Among these fractures, large-scale fractures might strongly affect fluid flow, making them essential for production behavior. Areas with densely populated small-scale fractures might also affect the flow capacity of the region and contribute to production. However, because of limited information, locating each small-scale fracture individually is impossible. The coexistence of different fracture scales also constitutes a great challenge for history matching. In this work, an integrated approach is proposed to inverse model multiscale fractures hierarchically using dynamic production data. In the proposed method, a hybrid of an embedded discrete fracture model (EDFM) and a dual-porosity/dual-permeability (DPDP) model is devised to parameterize multiscale fractures. The large-scale fractures are explicitly modeled by EDFM with Hough-transform-based parameterization to maintain their geometrical details. For the area with densely populated small-scale fractures, a truncated Gaussian field is applied to capture its spatial distribution, and then the DPDP model is used to model this fracture area. After the parameterization, an iterative history-matching method is used to inversely model the flow in a fractured reservoir. Several synthetic cases, including one case with single-scale fractures and three cases with multiscale fractures, are designed to test the performance of the proposed approach.


Water ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 1438 ◽  
Author(s):  
Luis Morales-Marín ◽  
Howard Wheater ◽  
Karl-Erich Lindenschmidt

Climate and land-use changes modify the physical functioning of river basins and, in particular, influence the transport of nutrients from land to water. In large-scale basins, where a variety of climates, topographies, soil types and land uses co-exist to form a highly heterogeneous environment, a more complex nutrient dynamic is imposed by climate and land-use changes. This is the case of the South Saskatchewan River (SSR) that, along with the North Saskatchewan River, forms one of the largest river systems in western Canada. The SPAtially Referenced Regression On Watershed (SPARROW) model is therefore implemented to assess water quality in the basin, in order to describe spatial and temporal patterns and identify those factors and processes that affect water quality. Forty-five climate and land-use change scenarios comprehended by five General Circulation Models (GCMs) and three Representative Concentration Pathways (RCPs) were incorporated into the model to explain how total nitrogen (TN) and total phosphorus (TP) export could vary across the basin in 30, 60 and 90 years from now. According to model results, annual averages of TN and TP export in the SSR are going to increase in the range 0.9–1.28 kg km − 2 year − 1 and 0.12–0.17 kg km − 2 year − 1 , respectively, by the end of the century, due to climate and land-use changes. Higher increases of TP compared to TN are expected since TP and TN are going to increase ∼36% and ∼21%, respectively, by the end of the century. This research will support management plans in order to mitigate nutrient export under future changes of climate and land use.


Author(s):  
Daniel F. Walczyk ◽  
Seungryeol Yoo

Profiled Edge Laminae (PEL) tooling is a thick-layer Rapid Tooling (RT) method that was developed a decade ago. Even with demonstrable advantages for large-scale tool applications over conventional CNC-machining of a solid billet and other commercially available RT methods, PEL tooling has not seen widespread use by industry because prior research related to laminated tooling has (1) focused on small-scale tools and perpendicular laser-cutting that required extensive surface finishing, and (2) there is no integrated and practical design and fabrication approach to tooling development. This paper describes a more streamlined and integrated approach to PEL tooling development, called the PEL Process, that builds upon prior work in this area. Critical components of the process that are described in detail include how to obtain lamina slicing information directly from a CAD model of the intended tool surface, how to measure dimensional errors between the PEL and CAD tool surfaces, and improved Abrasive Waterjet cutting trajectory and laminae slicing algorithms. The PEL Process is then demonstrated for the design and fabrication of aluminum PEL tooling used for hydroforming aircraft sheet metal components.


Land ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 29 ◽  
Author(s):  
Martin Jepsen ◽  
Matilda Palm ◽  
Thilde Bruun

Mainland Southeast Asia (MSA) has seen sweeping upland land use changes in the past decades, with transition from primarily subsistence shifting cultivation to annual commodity cropping. This transition holds implications for local upland communities and ecosystems. Due to its particular political regime, Myanmar is at the tail of this development. However, with Myanmar’s official strategy of agricultural commercialization and intensification, recent liberalization of the national economy, and influx of multinational agricultural companies, the effects on upland land transitions could come fast. We analyze the current state of upland land use in Myanmar in a socio-economic and political context, identify the dynamics in three indicator commodity crops (maize, cassava, and rubber), and discuss the state driven economic, tenurial and policy reforms that have occurred in upland areas of mainland Southeast Asian countries in past decades. We draw on these insights to contextualize our study and hypothesize about possible transition pathways for Myanmar. The transition to annual commodity cropping is generally driven by a range of socio-economic and technical factors. We find that land use dynamics for the three indicator crops are associated with market demand and thus the opening of national Southeast-Asian economies, research and development of locally suitable high yielding varieties (HYVs), and subsidies for the promotion of seeds and inputs. In contrast, promotion of HYVs in marginal areas and without adequate agricultural extension services may results in agricultural contraction and yield dis-intensification. The environmental impacts of the transition depend on the transition pathway, e.g., through large-scale plantation projects or smallholder initiatives. The agricultural development in upland MSA follows a clear diffusion pattern with transition occurring first in Thailand, spreading to Vietnam, Cambodia and Laos. While these countries point to prospects for Myanmar, we hypothesize that changes will come slow due to Myanmar’s sparse rural infrastructure, with uncertainty about tenure, in particular in areas still troubled by armed conflicts, and unwillingness of international investors to approach Myanmar given the recent setbacks to the democratization process.


2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
D. Amarsaikhan ◽  
V. Battsengel ◽  
E. Egshiglen ◽  
R. Gantuya ◽  
D. Enkhjargal

The aim of this study is to analyze the urban land use changes occurred in the central part of Ulaanbaatar, the capital city of Mongolia, from 1930 to 2008 with a 10-year interval using geographical information system (GIS) and very high-resolution remote sensing (RS) data sets. As data sources, a large-scale topographic map, panchromatic and multispectral Quickbird images, and TerraSAR synthetic aperture radar (SAR) data are used. The primary urban land use database is developed using the topographic map of the study area and historical data about buildings. To extract updated land use information from the RS images, Quickbird and TerraSAR images are fused. For the fusion, ordinary and special image fusion techniques are used and the results are compared. For the final land use change analysis and RS image processing, ArcGIS and Erdas imagine systems installed in a PC environment are used. Overall, the study demonstrates that within the last few decades the central part of Ulaanbaatar city is urbanized very rapidly and became very dense.


Sign in / Sign up

Export Citation Format

Share Document