scholarly journals Community structure: A comparative evaluation of community detection methods

2020 ◽  
Vol 8 (1) ◽  
pp. 1-41 ◽  
Author(s):  
Vinh Loc Dao ◽  
Cécile Bothorel ◽  
Philippe Lenca

AbstractDiscovering community structure in complex networks is a mature field since a tremendous number of community detection methods have been introduced in the literature. Nevertheless, it is still very challenging for practitioners to determine which method would be suitable to get insights into the structural information of the networks they study. Many recent efforts have been devoted to investigating various quality scores of the community structure, but the problem of distinguishing between different types of communities is still open. In this paper, we propose a comparative, extensive, and empirical study to investigate what types of communities many state-of-the-art and well-known community detection methods are producing. Specifically, we provide comprehensive analyses on computation time, community size distribution, a comparative evaluation of methods according to their optimization schemes as well as a comparison of their partitioning strategy through validation metrics. We process our analyses on a very large corpus of hundreds of networks from five different network categories and propose ways to classify community detection methods, helping a potential user to navigate the complex landscape of community detection.

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Vesa Kuikka

AbstractWe present methods for analysing hierarchical and overlapping community structure and spreading phenomena on complex networks. Different models can be developed for describing static connectivity or dynamical processes on a network topology. In this study, classical network connectivity and influence spreading models are used as examples for network models. Analysis of results is based on a probability matrix describing interactions between all pairs of nodes in the network. One popular research area has been detecting communities and their structure in complex networks. The community detection method of this study is based on optimising a quality function calculated from the probability matrix. The same method is proposed for detecting underlying groups of nodes that are building blocks of different sub-communities in the network structure. We present different quantitative measures for comparing and ranking solutions of the community detection algorithm. These measures describe properties of sub-communities: strength of a community, probability of formation and robustness of composition. The main contribution of this study is proposing a common methodology for analysing network structure and dynamics on complex networks. We illustrate the community detection methods with two small network topologies. In the case of network spreading models, time development of spreading in the network can be studied. Two different temporal spreading distributions demonstrate the methods with three real-world social networks of different sizes. The Poisson distribution describes a random response time and the e-mail forwarding distribution describes a process of receiving and forwarding messages.


Author(s):  
Guishen Wang ◽  
Kaitai Wang ◽  
Hongmei Wang ◽  
Huimin Lu ◽  
Xiaotang Zhou ◽  
...  

Local community detection algorithms are an important type of overlapping community detection methods. Local community detection methods identify local community structure through searching seeds and expansion process. In this paper, we propose a novel local community detection method on line graph through degree centrality and expansion (LCDDCE). We firstly employ line graph model to transfer edges into nodes of a new graph. Secondly, we evaluate edges relationship through a novel node similarity method on line graph. Thirdly, we introduce local community detection framework to identify local node community structure of line graph, combined with degree centrality and PageRank algorithm. Finally, we transfer them back into original graph. The experimental results on three classical benchmarks show that our LCDDCE method achieves a higher performance on normalized mutual information metric with other typical methods.


2019 ◽  
Vol 33 (29) ◽  
pp. 1950352
Author(s):  
Bo Yang ◽  
Tao Huang ◽  
Xu Li

Many networks have community structure — groups of nodes within which connections are dense but between which they are sparser. While there exists a range of algorithms for community detection in networks, most of them try to discover this important mesoscale structure from a topological point of view solely. Here we develop a hybrid clustering approach for uncovering the community structure in a network using a combination of information on local topology of the network and on the dynamics of the cascading failures. The originality of the proposed approach is that we introduce a novel fusion of the dynamic behaviors of the cascading failures and topological metric functions in the [Formula: see text]th-nearest neighbor density scheme, which integrates both the global and local structural information of a given network for community detection. The experimental results on both artificial random and real-world benchmark networks indicate the effectiveness and reliability of our approach.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Jun Jin Choong ◽  
Xin Liu ◽  
Tsuyoshi Murata

Discovering and modeling community structure exist to be a fundamentally challenging task. In domains such as biology, chemistry, and physics, researchers often rely on community detection algorithms to uncover community structures from complex systems yet no unified definition of community structure exists. Furthermore, existing models tend to be oversimplified leading to a neglect of richer information such as nodal features. Coupled with the surge of user generated information on social networks, a demand for newer techniques beyond traditional approaches is inevitable. Deep learning techniques such as network representation learning have shown tremendous promise. More specifically, supervised and semisupervised learning tasks such as link prediction and node classification have achieved remarkable results. However, unsupervised learning tasks such as community detection remain widely unexplored. In this paper, a novel deep generative model for community detection is proposed. Extensive experiments show that the proposed model, empowered with Bayesian deep learning, can provide insights in terms of uncertainty and exploit nonlinearities which result in better performance in comparison to state-of-the-art community detection methods. Additionally, unlike traditional methods, the proposed model is community structure definition agnostic. Leveraging on low-dimensional embeddings of both network topology and feature similarity, it automatically learns the best model configuration for describing similarities in a community.


2014 ◽  
Vol 28 (28) ◽  
pp. 1450199
Author(s):  
Shengze Hu ◽  
Zhenwen Wang

In the real world, a large amount of systems can be described by networks where nodes represent entities and edges the interconnections between them. Community structure in networks is one of the interesting properties revealed in the study of networks. Many methods have been developed to extract communities from networks using the generative models which give the probability of generating networks based on some assumption about the communities. However, many generative models require setting the number of communities in the network. The methods based on such models are lack of practicality, because the number of communities is unknown before determining the communities. In this paper, the Bayesian nonparametric method is used to develop a new community detection method. First, a generative model is built to give the probability of generating the network and its communities. Next, the model parameters and the number of communities are calculated by fitting the model to the actual network. Finally, the communities in the network can be determined using the model parameters. In the experiments, we apply the proposed method to the synthetic and real-world networks, comparing with some other community detection methods. The experimental results show that the proposed method is efficient to detect communities in networks.


Author(s):  
Di Jin ◽  
Xinxin You ◽  
Weihao Li ◽  
Dongxiao He ◽  
Peng Cui ◽  
...  

Recent research on community detection focuses on learning representations of nodes using different network embedding methods, and then feeding them as normal features to clustering algorithms. However, we find that though one may have good results by direct clustering based on such network embedding features, there is ample room for improvement. More seriously, in many real networks, some statisticallysignificant nodes which play pivotal roles are often divided into incorrect communities using network embedding methods. This is because while some distance measures are used to capture the spatial relationship between nodes by embedding, the nodes after mapping to feature vectors are essentially not coupled any more, losing important structural information. To address this problem, we propose a general Markov Random Field (MRF) framework to incorporate coupling in network embedding which allows better detecting network communities. By smartly utilizing properties of MRF, the new framework not only preserves the advantages of network embedding (e.g. low complexity, high parallelizability and applicability for traditional machine learning), but also alleviates its core drawback of inadequate representations of dependencies via making up the missing coupling relationships. Experiments on real networks show that our new approach improves the accuracy of existing embedding methods (e.g. Node2Vec, DeepWalk and MNMF), and corrects most wrongly-divided statistically-significant nodes, which makes network embedding essentially suitable for real community detection applications. The new approach also outperforms other state-of-the-art conventional community detection methods.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Yu Tian ◽  
Sebastian Lautz ◽  
Alisdair O. G. Wallis ◽  
Renaud Lambiotte

AbstractThe complementarity and substitutability between products are essential concepts in retail and marketing. Qualitatively, two products are said to be substitutable if a customer can replace one product by the other, while they are complementary if they tend to be bought together. In this article, we take a network perspective to help automatically identify complements and substitutes from sales transaction data. Starting from a bipartite product-purchase network representation, with both transaction nodes and product nodes, we develop appropriate null models to infer significant relations, either complements or substitutes, between products, and design measures based on random walks to quantify their importance. The resulting unipartite networks between products are then analysed with community detection methods, in order to find groups of similar products for the different types of relationships. The results are validated by combining observations from a real-world basket dataset with the existing product hierarchy, as well as a large-scale flavour compound and recipe dataset.


2020 ◽  
Author(s):  
Vesa Kuikka

Abstract We present methods for analysing hierarchical and overlapping community structure and spreading phenomena on complex networks. Different models can be developed for describing static connectivity or dynamical processes on a network topology. In this study, classical network connectivity and influence spreading models are used as examples for network models. Analysis of results is based on a probability matrix describing interactions between all pairs of nodes in the network. One popular research area has been detecting communities and their structure in complex networks. The community detection method of this study is based on optimising a quality function calculated from the probability matrix. The same method is proposed for detecting underlying groups of nodes that are building blocks of different sub-communities in network structure. We present different quantitative measures for comparing and ranking solutions of the community detection algorithm. These measures describe properties of sub-communities: strength of a community, probability of formation and robustness of composition. We illustrate the community detection methods with two small network topologies. In case of network spreading models, time development of spreading in the network can be studied. Two different temporal spreading distributions demonstrate the methods with three real-world social networks of different sizes. The Poisson distribution describes a random response time and the e-mail forwarding distribution describes a process of receiving and forwarding messages.


2014 ◽  
Vol 513-517 ◽  
pp. 2045-2049
Author(s):  
Jie Tian ◽  
Hao Guo ◽  
Yu Wang

According to the problem of extracting the community structure of large networks, we propose a simple heuristic method based on community coding optimization. It is shown to outperform the InfoMap community detection method in terms of computation time. Experiments show that our method can find out various communities in microblog, which reveal the core structure of the network.


2021 ◽  
Vol 11 (6) ◽  
pp. 2857
Author(s):  
Faiza Riaz Khawaja ◽  
Jinfang Sheng ◽  
Bin Wang ◽  
Yumna Memon

Community detection, also known as graph clustering, in multi-layer networks has been extensively studied in the literature. The goal of community detection is to partition vertices in a network into densely connected components so called communities. Networks contain a set of strong, dominant communities, which may interfere with the detection of weak, natural community structure. When most of the members of the weak communities also belong to stronger communities, they are extremely hard to be uncovered. We call the weak communities the hidden or disguised community structure. In this paper, we present a method to uncover weak communities in a network by weakening the strength of the dominant structure. With the aim to detect the weak communities, through experiments, we observe real-world networks to answer the question of whether real-world networks have hidden community structure or not. Results of the hidden community detection (HCD) method showed the great variation in the number of communities detected in multiple layers when compared with the results of other community detection methods.


Sign in / Sign up

Export Citation Format

Share Document