scholarly journals Globular Clusters in the Galactic Bulge

Author(s):  
E. Bica ◽  
S. Ortolani ◽  
B. Barbuy

AbstractA view of the Galactic bulge by means of their globular clusters is fundamental for a deep understanding of its formation and evolution. Connections between the globular cluster and field star properties in terms of kinematics, orbits, chemical abundances, and ages should shed light on different stellar population components. Based on spatial distribution and metallicity, we define a probable best list of bulge clusters, containing 43 entries. Future work on newly discovered objects, mostly from the VVV survey, is suggested. These candidates might alleviate the issue of missing clusters on the far side of the bulge. We discuss the reddening law affecting the cluster distances towards the centre of the Galaxy, and conclude that the most suitable total-to-selective absorption value appears to be RV=3.2, in agreement with recent analyses. An update of elemental abundances for bulge clusters is provided.

Author(s):  
B. Barbuy

AbstractThe Galactic bulge is the least studied component of our Galaxy. Yet, its formation and evolution are key to understand the formation of the Galaxy itself. Studies on the Galactic bulge have increased significantly in the last years, but still there are many points of controversy. This volume contains several contributions from experts in different aspects of the bulge. Issues discussed include the following: the presence of an old spheroidal bulge, or identification of its old stellar population with the thick disk or halo; fraction of stars younger than 10 Gyr is estimated to be of < 5 to 22% depending on method and authors; multiple populations or only a metal-poor and a metal-rich ones; spheroidal or ellipsoidal distribution of RR Lyrae; formation of the bulge from early mergers or from secular evolution of the bar; different methods of mapping extinction; selection and identification of bulge globular clusters.


1978 ◽  
Vol 80 ◽  
pp. 177-182
Author(s):  
R. Canterna ◽  
R. A. Schommer

Photometric metal abundances of individual red giants in eight extremely distant halo globular clusters and the Draco and Ursa Minor dwarf spheroidal galaxies have been obtained using the Washington broad-band system, C, M, T1, T2(Canterna 1976). Observations were made at the KPNO 2.1-m and CTIO 1.5-m telescopes. In Table I we list for each system the mean value of [Fe/H], the number of stars observed in each system, n, the Galactocentric distance, RGC, the intrinsic color of the giant branch at the level of the horizontal branch (HB), (B-V)o,g, and the fraction of HB stars bluer than the RR Lyrae gap, fB. Sources for unpublished color-magnitude diagram (CMD) data are: Pal 11 (Canterna and Schommer), Pal 12 (Canterna and Harris), and Ursa Minor (Schommer, Olszewski and Kunkel).


2019 ◽  
Vol 14 (S351) ◽  
pp. 324-328
Author(s):  
Mattia Libralato

AbstractSpectroscopy and photometry have revealed existence, complexity and properties of the multiple stellar populations (mPOPs) hosted in Galactic globular clusters. However, the conundrum of the formation and evolution of mPOPs is far from being completely exploited: the available pieces of information seem not enough to shed light on these topics. Astrometry, and in particular high-precision proper motions, can provide us the sought-after answers about how mPOPs formed and have evolved in these ancient stellar systems. In the following, I present a brief overview of the observational results on the internal kinematics of the mPOPs in some GCs thanks to Hubble Space Telescope high-precision proper motions.


2019 ◽  
Vol 485 (3) ◽  
pp. 4311-4329 ◽  
Author(s):  
Christian I Johnson ◽  
Nelson Caldwell ◽  
R Michael Rich ◽  
Mario Mateo ◽  
John I Bailey

ABSTRACT NGC 6402 is among the most massive globular clusters in the Galaxy, but little is known about its detailed chemical composition. Therefore, we obtained radial velocities and/or chemical abundances of 11 elements for 41 red giant branch stars using high resolution spectra obtained with the Magellan-M2FS instrument. We find NGC 6402 to be only moderately metal-poor with 〈[Fe/H]〉 = −1.13 dex (σ = 0.05 dex) and to have a mean heliocentric radial velocity of −61.1 km s−1 (σ = 8.5 km s−1). In general, NGC 6402 exhibits mean composition properties that are similar to other inner Galaxy clusters, such as [α/Fe] ∼+0.3 dex, [Cr,Ni/Fe] ∼ 0.0 dex, and 〈[La/Eu]〉 = −0.08 dex. Similarly, we find large star-to-star abundance variations for O, Na, Mg, Al, and Si that are indicative of gas that experienced high temperature proton-capture burning. Interestingly, we not only detect three distinct populations but also find large gaps in the [O/Fe], [Na/Fe], and [Al/Fe] distributions that may provide the first direct evidence of delayed formation for intermediate composition stars. A qualitative enrichment model is discussed where clusters form stars through an early ($\lesssim$5–10 Myr) phase, which results in first generation and ‘extreme’ composition stars, and a delayed phase ($\gtrsim$40 Myr), which results in the dilution of processed and pristine gas and the formation of intermediate composition stars. For NGC 6402, the missing intermediate composition stars suggest the delayed phase terminated prematurely, and as a result the cluster may uniquely preserve details of the chemical enrichment process.


2007 ◽  
Vol 3 (S245) ◽  
pp. 369-370
Author(s):  
Takuji Tsujimoto

AbstractWe explore the elemental abundance features of metal-rich disk stars, highlighting the comparisons made with those of the recently revealed Galactic bulge stars. A similarity between two of the comparisons leads to a new theoretical picture of the bulge-disk connection in the Galaxy, where a supermassive black hole resides at the center. We postulate that a metal-rich outflow, triggered by feedback from a black hole, was generated and quenched the star formation, which had lasted several billion years in the bulge. The expelled gas cooled down in the Galactic halo without escaping from the gravitational potential of the Galaxy. The gas gradually started to accrete to the disk around five billion years ago, corresponding to the time of sun's birth, and replaced a low-metallicity halo gas that had been accreting over nearly ten billion years. The metal-rich infalling gas, whose elemental abundance reflects that of metal-rich bulge stars, mixed with the interstellar gas already present in the disk. Stars formed from the mixture compose the metal-rich stellar disk.


Author(s):  
Jacco Th. van Loon

I discuss the chemical evolution of star clusters, with emphasis on old Galactic globular clusters (GCs), in relation to their formation histories. GCs are clearly formed in a complex fashion, under markedly different conditions from any younger clusters presently known. Those special conditions must be linked to the early formation epoch of the Galaxy and must not have occurred since. While a link to the formation of GCs in dwarf galaxies has been suggested, present-day dwarf galaxies are not representative of the gravitational potential wells within which the GCs formed. Instead, a formation deep within the proto-Galaxy or within dark-matter mini-haloes might be favoured. Not all GCs may have formed and evolved similarly. In particular, we may need to distinguish Galactic Halo from Galactic Bulge clusters.


Author(s):  
Duncan A. Forbes ◽  
Nate Bastian ◽  
Mark Gieles ◽  
Robert A. Crain ◽  
J. M. Diederik Kruijssen ◽  
...  

We discuss some of the key open questions regarding the formation and evolution of globular clusters (GCs) during galaxy formation and assembly within a cosmological framework. The current state of the art for both observations and simulations is described, and we briefly mention directions for future research. The oldest GCs have ages greater than or equal to 12.5 Gyr and formed around the time of reionization. Resolved colour-magnitude diagrams of Milky Way GCs and direct imaging of lensed proto-GCs at z ∼6 with the James Webb Space Telescope (JWST) promise further insight. GCs are known to host multiple populations of stars with variations in their chemical abundances. Recently, such multiple populations have been detected in ∼2 Gyr old compact, massive star clusters. This suggests a common, single pathway for the formation of GCs at high and low redshift. The shape of the initial mass function for GCs remains unknown; however, for massive galaxies a power-law mass function is favoured. Significant progress has been made recently modelling GC formation in the context of galaxy formation, with success in reproducing many of the observed GC-galaxy scaling relations.


1977 ◽  
Vol 4 (1) ◽  
pp. 111-122 ◽  
Author(s):  
Jonathan E. Grindlay

The discoveries of both steady and bursting X-ray sources in globular clusters have made them as interesting for high energy astrophysics and X-ray astronomy as they were for unlocking galactic structure in Shapley’ s day. Globular clusters are massive (˜ 105M⊙) spherical clusters of primarily low mass (⋞0.8 M⊙) evolved stars and may be the oldest systems in the Galaxy. Thus when several globular clusters were tentatively identified as containing X-ray sources (Giacconiet al. 1974), it was apparent that either dynamical or evolutionary processes must be occurring among the ancient stars in globular clusters to produce the relatively short-lived X-ray sources. The existence of these X-ray sources has prompted considerable discussion as to their origin, since they exist with ˜100 times the probability per unit mass in globular clusters as in the Galaxy as a whole (Katz 1975; Clark 1975). They may be yet another example of X-ray binaries (e. g., Clark 1975; Fabianet al. 1975) or be due to accretion onto a single collapsed object (black hole) at the center of the cluster (Bahcall and Ostrlker 1975; Silk and Arons 1975). At present both of these classes of models are possible and generally consistent with the data, though each has its particular difficulties. We shall review the observational data and then the models in an effort to point out the present balance of evidence for the binaryvs.black hole models as well as the most promising directions for future work. Given the possibly high incidence of X-ray bursters in globular clusters, our discussion will refer to both observations and recent models for bursters. While this review will primarily address the X-ray sources in globular clusters, it is obvious that their eventual understanding will contribute much to studies of globular clusters in general and will prompt future studies in particular areas.


2009 ◽  
Vol 5 (S265) ◽  
pp. 271-278 ◽  
Author(s):  
M. Zoccali

AbstractThe Galactic bulge is the central spheroid of our Galaxy, containing about one quarter of the total stellar mass of the Milky Way (Mbulge = 1.8 × 1010M⊙; Sofue, Honma & Omodaka 2009). Being older than the disk, it is the first massive component of the Galaxy to have collapsed into stars. Understanding its structure, and the properties of its stellar population, is therefore of great relevance for galaxy formation models. I will review our current knowledge of the bulge properties, with special emphasis on chemical abundances, recently measured for several hundred stars.


Sign in / Sign up

Export Citation Format

Share Document