scholarly journals Representation in Early Stage Design: An Analysis of the Influence of Sketching and Prototyping in Design Projects

Author(s):  
Catherine Elsen ◽  
Anders Häggman ◽  
Tomonori Honda ◽  
Maria C. Yang

Sketching and prototyping of design concepts have long been valued as tools to support productive early stage design. This study investigates previous findings about the interplay between the use and timing of use of such design tools. This study evaluates such tools in the context of team design projects. General trends and statistically significant results about “sketchstorming” and prototyping suggest that, in certain constrained contexts, the focus should be on the quality of information rather than on the quantity of information generated, and that prototyping should begin as soon as possible during the design process. Ramifications of these findings are discussed in the context of educating future designers on the efficient use of design tools.


2021 ◽  
Vol 1 ◽  
pp. 11-20
Author(s):  
Owen Freeman Gebler ◽  
Mark Goudswaard ◽  
Ben Hicks ◽  
David Jones ◽  
Aydin Nassehi ◽  
...  

AbstractPhysical prototyping during early stage design typically represents an iterative process. Commonly, a single prototype will be used throughout the process, with its form being modified as the design evolves. If the form of the prototype is not captured as each iteration occurs understanding how specific design changes impact upon the satisfaction of requirements is challenging, particularly retrospectively.In this paper two different systems for digitising physical artefacts, structured light scanning (SLS) and photogrammetry (PG), are investigated as means for capturing iterations of physical prototypes. First, a series of test artefacts are presented and procedures for operating each system are developed. Next, artefacts are digitised using both SLS and PG and resulting models are compared against a master model of each artefact. Results indicate that both systems are able to reconstruct the majority of each artefact's geometry within 0.1mm of the master, however, overall SLS demonstrated superior performance, both in terms of completion time and model quality. Additionally, the quality of PG models was far more influenced by the effort and expertise of the user compared to SLS.



2021 ◽  
pp. 62-77
Author(s):  
Negar Kalantar ◽  
Alireza Borhani

After sufficient consideration for the proper balance between material and formal constraints, this chapter describes a pedagogical approach that transforms the education of future architects through a 'form-finding' method, allowing the material to accommodate itself to form and celebrate its own nature. To enhance pedagogical improvement of foundational studies in architecture and further explore this pedagogy based on form-finding in early design education, this chapter also presents the challenges to integrating materiality within the design process, as derived from the incorporation of experimental form-finding methods into early-stage design.





Author(s):  
Bryan Macomber ◽  
Maria Yang

Conceptual sketches of design alternatives are often employed as a tool for eliciting feedback from design stakeholders, including potential end-users. However, such sketches can vary widely in their level of finish and style, thus potentially affecting how users respond to a concept. This paper presents a study of user responses to three objects drawn in styles ranging from rough hand sketches to CAD drawings. This study also considers the amount of design time required to create the sketches. Results show that respondents generally ranked realistic, “clean” hand sketches the highest over other types of sketches, particularly “rough” sketches. These types of sketches took longer than other types of hand sketches to create, but were still much faster than CAD renderings. Results also suggest that the complexity and familiarity of an object can influence how users respond to a sketch.



2021 ◽  
Vol 1 ◽  
pp. 1163-1172
Author(s):  
Rachel Meredith Moore ◽  
Anna-Maria Rivas McGowan ◽  
Nathaneal Jeyachandran ◽  
Kathleen H. Bond ◽  
Daniel Williams ◽  
...  

AbstractThe earliest stage in the innovation lifecycle, problem formulation, is crucial for setting direction in an innovation effort. When faced with an interesting problem, engineers commonly assume the approximate solution area and focus on ideating innovative solutions. However, in this project, NASA and their contracted partner, Accenture, collaboratively conducted problem discovery to ensure that solutioning efforts were focused on the right problems, for the right users, and addressing the most critical needs—in this case, exploring weather tolerant operations (WTO) to further urban air mobility (UAM) – known as UAM WTO. The project team leveraged generative, qualitative methods to understand the ecosystem, players, and where challenges in the industry are inhibiting development. The complexity of the problem area required that the team constantly observe and iterate on problem discovery, effectively “designing the design process.” This paper discusses the approach, methodologies, and selected results, including significant insights on the application of early-stage design methodologies to a complex, system-level problem.



Author(s):  
W. Lawrence Neeley ◽  
Kirsten Lim ◽  
April Zhu ◽  
Maria C. Yang

While rapid prototyping has proved to be an invaluable resource for expediting particular phases of the design process, its decreasing cost of operation and increasing accessibility reveal greater potential for these tools to substantially impact the design process itself. While many studies have investigated the advantages of creating and interacting with physical models in engineering design, this study explores the value of delaying decisions and pursuing many prototypes as it applies to individual designers in the earliest phases of the design process. Inspired by The Second Toyota Paradox, we propose the use of Kolb’s theory of experiential learning to reconcile the implications of set-based rather than point-to-point engineering with the value of an individual designer’s learning through interactions with concrete objects. We compared the performance of engineering students in a design challenge. The independent variable was the number of prototypes the participant was required to produce in the first iteration. Participants who were instructed to produce more prototypes in the same amount of time in which their control counterparts were only required to produce one expressed much higher levels of time constraint and dissatisfaction in their primary prototypes. However, multiple-design participants’ prototypes performed better, showed significantly greater improvement between iterations; in addition, satisfaction increased significantly after completion of the final prototype. We look to Kolb’s theory of experiential learning and an individualized application of corporate concurrent engineering to suggest a new design process heavy in low-fidelity, low-quality physical models in early design stages.



2010 ◽  
Author(s):  
Fongloon Peter Pan ◽  
Ronald Schoon ◽  
Suresh Putta ◽  
Anil Ogale ◽  
Cheng Chen


Author(s):  
Yakira Mirabito ◽  
Kosa Goucher-Lambert

Abstract Ongoing work within the engineering design research community seeks to develop automated design methods and tools that enhance the natural capabilities of designers in developing highly innovative concepts. Central to this vision is the ability to first obtain a deep understanding of the underlying behavior and process dynamics that predict successful performance in early-stage concept generation. The objective of this research is to better understand the predictive factors that lead to improved performance during concept generation. In particular, this work focuses on the impact of idea fluency and timing of early-stage design concepts, and their effect on overall measures of ideation session success. To accomplish this, we leverage an existing large-scale dataset containing hundreds of early-stage design concepts; each concept contains detailed ratings regarding its overall feasibility, usefulness, and novelty, as well as the completion time of each idea. Surprisingly, results indicate that there is no effect of idea fluency or timing on the quality of the output when using a holistic evaluation mechanism, such as the innovation measure, instead of a single measure such as novelty. Thus, exceptional concepts can be achieved by all generator segments independent of idea fluency. Furthermore, in early-stage concept generation sessions, highest-rated concepts have an equal probability of occurring early and late in a session. Taken together, these findings can be used to improve performance in ideation by effectively determining when and which types of design interventions future design tools might suggest.



2020 ◽  
Vol 12 (23) ◽  
pp. 10118
Author(s):  
Miren Juaristi ◽  
Thaleia Konstantinou ◽  
Tomás Gómez-Acebo ◽  
Aurora Monge-Barrio

Adaptive Opaque Facades (AOF) is an innovative concept with potential to achieve low carbon energy buildings. However, so far AOF are not integrated in the construction industry. One remarkable issue that designers have when dealing with alternative low-carbon technologies, such as AOF, is the absence of previous built experiences and the lack of specialised technical knowledge. Design roadmaps can be convenient solutions to guide pioneer low carbon technology applications. This work presents a roadmap to assist the performance-based early-stage design process of Adaptive Opaque Facades. Previous research developed new approaches and tools to assist on the construction definition of AOF, so that their adaptive thermal performance was considered when specific design decisions needed to be made. The roadmap presented in this paper organises the implementation sequence of each methodological approach and tools in different design stages, which aims to provide a holistic design approach for AOF. The usability of the roadmap was validated in a workshop called “Performance-based Design and Assessment of Adaptive Facades” with master students representing the target group of this roadmap. Even though these students had never heard about AOF before, they could successfully design, define the early-stage characteristics of an AOF and quantify the thermal performance of their AOF designs. The roadmap was proven to be a useful support, which might make the implementation of AOF more approachable in the future.



2015 ◽  
Vol 137 (7) ◽  
Author(s):  
Anders Häggman ◽  
Geoff Tsai ◽  
Catherine Elsen ◽  
Tomonori Honda ◽  
Maria C. Yang

Gathering user feedback on provisional design concepts early in the design process has the potential to reduce time-to-market and create more satisfying products. Among the parameters that shape user response to a product, this paper investigates how design experts use sketches, physical prototypes, and computer-aided design (CAD) to generate and represent ideas, as well as how these tools are linked to design attributes and multiple measures of design quality. Eighteen expert designers individually addressed a 2 hr design task using only sketches, foam prototypes, or CAD. It was found that prototyped designs were generated more quickly than those created using sketches or CAD. Analysis of 406 crowdsourced responses to the resulting designs showed that those created as prototypes were perceived as more novel, more aesthetically pleasing, and more comfortable to use. It was also found that designs perceived as more novel tended to fare poorly on all other measured qualities.



Sign in / Sign up

Export Citation Format

Share Document