scholarly journals Long-term impacts of mid-Holocene drier climatic conditions on Bolivian tropical dry forests

2019 ◽  
Vol 93 ◽  
pp. 204-224 ◽  
Author(s):  
Heather J. Plumpton ◽  
Francis E. Mayle ◽  
Bronwen S. Whitney

AbstractThe Bolivian Chiquitano dry forest is the largest block of intact seasonally dry tropical forest in South America and is a priority ecoregion for conservation due to its high threat status. However, the long-term impacts of drier climatic conditions on tropical dry forests are not well understood, despite climate models predicting increased droughts over Bolivia in the coming century. In this paper, we assess the impacts of drier climatic conditions during the mid-Holocene on the Bolivian Chiquitano tropical dry forest using fossilised pollen, phytoliths, macro-charcoal, and geochemical proxies from a sediment core from a large lake (Laguna Mandioré) on the Bolivia–Brazil border. Our results show that drier climatic conditions during the mid-Holocene caused a local-scale, ecotonal expansion of upland savannah at the expense of dry forest. Interaction between drier climatic conditions and fire regime likely exerted a stronger control over the position of the dry forest–savannah ecotone than edaphic factors. However, the majority of the dry forest within the lake catchment maintained a closed canopy throughout the drier conditions of the mid-Holocene, despite floristic turnover towards more drought-tolerant taxa. These findings imply overall resilience of the Chiquitano dry forest biome to future drought, albeit with floristic changes and upland savannah encroachment at ecotones.

2014 ◽  
Vol 92 (2) ◽  
pp. 281 ◽  
Author(s):  
Martha Cervantes ◽  
Eliane Ceccon ◽  
Consuelo Bonfil

<p><span style="font-size: medium;"><span style="font-family: Times New Roman;">Studies on propagation of trees of Tropical Dry Forests are scarce in Mexico, besides, the provenance of seeds used in reforestation programs is generally unknown or poorly addressed. Knowledge on seed germination patterns of different provenances, and how they change through time, is useful to identify adequate sources of seeds and to develop seed collection and storage programs under the low-tech conditions prevailing in most rural nurseries. We evaluated seed size variation and germination of stored seeds from three different provenances per species in <em>Acacia bilimekii</em>, <em>Haematoxylum brasiletto</em>, <em>Lysiloma acapulcense</em>, and<em> L. divaricatum</em>.<em> </em>Seeds were collected in four sites in the Tropical Dry Forest of Morelos, Mexico, and were stored at room temperature; seed size was estimated through the volume of 75 seeds per provenance/species. Seed germination tests were made periodically from six to 24 months after storage and the effects of provenance and storage time on germination were analyzed using Anovas. There were significant differences in seed size among provenances in all species, while the effect of provenance on germination rate was significant in three of them. Germination rate changed with storage time among species and provenances. After 24 months, germination capacity was still ≥ 50% in all provenances of the two <em>Lysiloma</em> species, but in <em>A.</em> <em>bilimekii</em> there were large differences among provenances. Mean germination capacity was low in <em>H. brasiletto</em> after six months. More research on seed germination and storage of a larger set of species and provenances is needed to restore the Mexican tropical dry forests. </span></span></p>


Forests ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 604 ◽  
Author(s):  
Philip Marzahn ◽  
Linda Flade ◽  
Arturo Sanchez-Azofeifa

In this paper, we address the retrieval of spatially distributed latent heat flux ( λ E) over a tropical dry forest using multi-spectral and thermal unmanned aerial vehicle (UAV) imagery. The study was carried out in the Santa Rosa National Park Environmental Monitoring Super-Site, Costa Rica, in June 2016. The triangle method was used to derive λ E from the UAV imagery and the results were compared to λ E measurements of an eddy covariance system within the coincident eddy flux tower footprint. The tower footprint was derived using a two-dimensional parameterization model for flux footprint prediction. The comparisons with the flux tower measurements showed a mean relative difference of 10.98% with a slight overestimation of the UAV-based flux retrievals by nearly 7.7 Wm − 2 . The results are in good agreement with satellite-based retrievals, as provided by the literature, for which the triangle method was initially developed and mostly used so far. This study proved to be a promising approach for transferring the triangle method to UAV imagery in ecosystems such as tropical dry forests. With the presented approach, new details in spatially distributed latent heat flux estimates at ultra-high resolution are now possible, thereby potentially closing the gap in spatial resolution between satellites and flux towers. Even more, it allows tracing the latent heat flux from single trees at leaf level. Besides, this approach also opens new perspectives for the monitoring of latent heat fluxes in tropical dry forests.


Diversity ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 231 ◽  
Author(s):  
Luc Legal ◽  
Marine Valet ◽  
Oscar Dorado ◽  
Jose Maria de Jesus-Almonte ◽  
Karime López ◽  
...  

Most evaluations of passive regeneration/natural succession or restoration have dealt with tropical rain forest or temperate ecosystems. Very few studies have examined the regeneration of tropical dry forests (TDF), one of the most damaged ecosystem types in the world. Owing to their species diversity and abundance, insects have been widely used as bioindicators of restoration. Butterflies were among the most abundant and useful groups. We sampled four sites with different levels of anthropogenic disturbance in a Mexican TDF (Morelos State) and compared butterfly communities. A first goal was to examine whether adult butterflies were significant bioindicators owing to their specificity to restricted habitats. A second aim was to determine if differences exist in butterfly communities between some fields abandoned from 4–8, 8–15 and 15–30 years and a reference zone considered as primary forest. We found 40% to 50% of the species of butterflies were specifically related to a habitat and/or a level of anthropogenic disturbance. The time it takes for passive regeneration and recovery of the Mexican tropical dry forest is much higher than 25 years (our older zone), considering that almost none of the butterflies found in our conserved reference zone were present in our 25 year aged study zone.


2009 ◽  
Vol 36 (3) ◽  
pp. 201-207 ◽  
Author(s):  
AYESHA E. PRASAD

SUMMARYAmong the most endangered tropical ecosystems, tropical dry forests are threatened by degradation that includes edge effects arising from perturbations such as the creation and maintenance of roads and other clearings. While much is known about these adverse effects on tree communities in tropical moist forests, similar effects in tropical dry forests are little understood. This paper examines the relationship between roads, road-related exotic plant invasion and tree community change in a tropical dry forest in southern India. Forty pairs of roadside and interior plots across four factorial combinations of road width (wide and narrow) and understorey type (native and exotic) were sampled. Tree death and extant tree community composition were compared using generalized linear models and similarity analyses. Tree death near roads was more than double that away from them, suggesting that roads may increase tree death in these forests. The interactive effect of understorey type (exotic or native) and road width on tree death was significant, with highest tree death near wide roads bordered by exotic understorey. Conversely, tree community composition was influenced by road width and understorey type, but not by proximity to roads. Creation and maintenance of roads for forest management may have serious implications for tree communities in tropical dry forests and should thus be minimized. Exotic plants may also be important contributors to increasing tree death, and further research on their impacts, particularly into underlying mechanisms, is critical to the long-term conservation of tropical dry forest communities.


Author(s):  
Abhinav Yadav ◽  
Pramit Verma ◽  
Akhilesh Singh Raghubanshi

Tropical dry forests (TDFs) are characterized by pronounced seasonality in precipitation, with several months of prolonged drought, 80% of annual precipitation occurring during a four- to six-month rainy season, and high interannual rainfall variability. Surprisingly, there are relatively few studies addressing patterns of functional trait in tropical dry forest (TDF) ecosystems. Functional trait analysis across plant species and the environment is a rapidly developing research field with many possible applications for forest restoration practice. Trait-based ecological research within TDFs will advance our understanding of how these ecosystems interact with and differ from other tropical ecosystems.


1999 ◽  
Vol 15 (5) ◽  
pp. 637-649 ◽  
Author(s):  
Thomas W. Gillespie

Breeding systems and dispersal mechanisms of plants (≥ 2.5 cm dbh) were examined in fragments of tropical dry forest in Central America to identify life-history characteristics associated with rarity. In particular, the richness and abundance of dioecious and mammal-dispersed trees and shrubs were examined to identify potential associations with precipitation, anthropogenic disturbance, and area. Plots totalling 1000 m2 per site were established in seven nature reserves in Costa Rica (two sites) and Nicaragua (five sites). Overall, tropical dry forests of Central America have a similar proportion of dioecious species to other lowland neotropical forests and a similar proportion of wind-dispersed plants to other tropical dry forests around the world. However, the number of dioecious and mammal-dispersed species declined with decreasing forest cover within each reserve. Although dioecious species were rare in smaller forest fragments, some of these species will not be threatened with regional extinction because they are early successional plants, they have large geographic ranges, and they are not restricted to the tropical dry forest life zone. Mammal-dispersed plants were rare in small fragments, but it is not clear whether this was due to the loss of dispersal vectors or other life-history characteristics.


Check List ◽  
2012 ◽  
Vol 8 (6) ◽  
pp. 1220 ◽  
Author(s):  
Junior T. Larreal ◽  
Gilson A. Rivas ◽  
Carlos Portillo-Quintero ◽  
Tito R. Barros

We present a commented taxonomic list of the reptiles found during herpetological surveys carried out in an isolated fragment of tropical dry forest located in the municipality of San Francisco, Zulia state, northwestern Venezuela between January-December 2011. We report a total of 24 species belonging to the order Squamata, distributed in 12 families and 21 genera. Colubridae is the most diverse family with six species, followed by Dipsadidae (four species), Boidae, Gymnophthalmidae, Phyllodactylidae and Teiidae with two species each, and finally Dactyloidae, Iguanidae, Elapidae, Gekkonidae, Sphaerodactylidae and Viperidae with a single species each. The species composition at this site matches what would be expected in a tropical dry forest in the region. Our study suggests that this isolated tropical dry forest fragment is the last refuge of the herpetofauna that once occupied much of the dry forests of the northern Maracaibo basin and should therefore be considered for conservation purposes.


Paleobiology ◽  
10.1666/12030 ◽  
2013 ◽  
Vol 39 (2) ◽  
pp. 235-252 ◽  
Author(s):  
Cindy V. Looy

Within conifers, active abscission of complete penultimate branch systems is not common and has been described mainly from juveniles. Here I present evidence for the abscission of penultimate branch systems within early so-called walchian conifers—trees with a plagiotropic branching pattern. The specimens studied originate from a middle Early Permian gymnosperm-dominated flora within the middle Clear Fork Group of north-central Texas. Complete branch systems of three walchian conifer morphotypes are preserved; all have pronounced swellings and smooth separation faces at their bases. The source plants grew in a streamside habitat under seasonally dry climatic conditions. The evolution of active branch abscission appears to correspond to an increase in the size of conifers, and this combination potentially contributed to the restructuring of conifer-rich late Paleozoic landscapes. Moreover, trees shedding branch systems and producing abundant litter have the potential to affect the fire regime, which is a factor of evolutionary importance because wildfires must have been a source of frequent biotic disturbance throughout the hyperoxic Early Permian.


Forests ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1241
Author(s):  
Hernán Morffi-Mestre ◽  
Gregorio Ángeles-Pérez ◽  
Jennifer S. Powers ◽  
José Luis Andrade ◽  
Astrid Helena Huechacona Ruiz ◽  
...  

Litterfall production plays a fundamental role in the dynamics and function of tropical forest ecosystems, as it supplies 70–80% of nutrients entering the soil. This process varies annually and seasonally, depending on multiple environmental factors. However, few studies spanning several years have addressed the combined effect of climate variables, successional age, topography, and vegetation structure in tropical dry forests. In this study, we evaluated monthly, seasonal, and annual litterfall production over a five-year period in semideciduous dry forests of different successional ages growing on contrasting topographic conditions (sloping or flat terrain) in Yucatan, Mexico. Its relationship with climate and vegetation structural variables were also analyzed using multiple linear regression and generalized linear models. Litterfall was measured monthly in 12 litterfall traps of 0.5 m2 in three sampling clusters (sets of four 400 m2 sampling plots) established in forests of five successional age classes, 3–5, 10–17, 18–25, 60–79, and >80 years (in the latter two classes either on slopping or on flat terrain), for a total of 15 sampling clusters and 180 litterfall traps. Litterfall production varied between years (negatively correlated with precipitation), seasons (positively correlated with wind speed and maximum temperature), and months (negatively correlated with relative humidity) and was higher in flat than in sloping sites. Litterfall production also increased with successional age until 18–25 years after abandonment, when it attained values similar to those of mature forests. It was positively correlated with the aboveground biomass of deciduous species but negatively correlated with the basal area of evergreen species. Our results show a rapid recovery of litterfall production with successional age of these forests, which may increase with climate changes such as less precipitation, higher temperatures, and higher incidence of hurricanes.


Sign in / Sign up

Export Citation Format

Share Document