Historical Perspectives on Exceptional Climatic Years at the Labrador/Nunatsiavut Coast 1780 to 1950

2020 ◽  
pp. 1-15
Author(s):  
Marie-Michèle Ouellet-Bernier ◽  
Anne de Vernal ◽  
Daniel Chartier ◽  
Étienne Boucher

Abstract This interdisciplinary study presents a human perspective on climatic variations by combining documentary, discursive, instrumental, and proxy data. Historical sources were used to characterize climate variations along the coast of Labrador/Nunatsiavut during the 19th century and the first half of the 20th century. Written and early instrumental archives provided original information on the state and perception of climate before the establishment of meteorological stations, which permitted an intra-annual perspective on climatic variations. Written sources depicted the sensitivity of humans to climatic variations. Exceptional seasonal climatic events were extracted from documentary and discursive sources, which were complemented by tree-ring and early instrumental data. From 1780 to 1900, data indicated a succession of relatively warm and cold episodes. Most warm periods were described as stormy and variable. The final part of the studied records showed cold conditions from 1900 to 1925 and warm conditions from 1925 to 1950. Historical sources helped to discriminate a seasonal signal. Mild autumn-winter conditions were recorded since 1910 in relation with positive anomalies of the North Atlantic Oscillation in winter. Relatively warm spring-summer conditions were recorded after 1920, which corresponds to a phase of positive anomaly of the Atlantic Multidecadal Oscillation.

2012 ◽  
Vol 69 (9) ◽  
pp. 1609-1615 ◽  
Author(s):  
Alicia S. Miller ◽  
Timothy F. Sheehan ◽  
Mark D. Renkawitz ◽  
Alfred L. Meister ◽  
Timothy J. Miller

Abstract Miller, A. S., Sheehan, T. F., Renkawitz, M. D., Meister, A. L., and Miller, T. J. 2012. Revisiting the marine migration of US Atlantic salmon using historical Carlin tag data. – ICES Journal of Marine Science, 69: 1609–1615. The development of a fishery for Atlantic salmon (Salmo salar) in the sea at West Greenland in the early 1960s prompted the start of a US tagging programme in 1962. Between 1962 and 1996, more than 1.5 million salmon from New England rivers, primarily hatchery-reared smolts, were tagged and released. Overall, the rate of tag recovery was 0.55%, with 23.2% of the tags recovered from Canada, 26.0% from Greenland, and 50.8% from the United States. A generalized additive model was used to analyse marine survival based on returns of tagged salmon to the Penobscot River. The month and year of release, sea age, smolt age, and environmental variables, such as the North Atlantic Oscillation (NAO) and Atlantic Multidecadal Oscillation (AMO) indices and local sea surface temperatures (SSTs), were assessed to explain the variability in the return rate. The AMO and NAO indices, SST, sea age, and time across years all affected survival assessed in terms of returns to the Penobscot River. The results provide information to support the management of Atlantic salmon stocks on a spatial and temporal scale in US rivers and the fishery at West Greenland.


2009 ◽  
Vol 66 (2) ◽  
pp. 289-304 ◽  
Author(s):  
Kevin D. Friedland ◽  
Julian C. MacLean ◽  
Lars P. Hansen ◽  
Arnaud J. Peyronnet ◽  
Lars Karlsson ◽  
...  

Abstract Friedland, K. D., MacLean, J. C., Hansen, L. P., Peyronnet, A. J., Karlsson, L., Reddin, D. G., Ó Maoiléidigh, N., and McCarthy, J. L. 2009. The recruitment of Atlantic salmon in Europe. – ICES Journal of Marine Science, 66: 289–304. The stock complex of Atlantic salmon, Salmo salar, in Europe has experienced a multidecadal decline in recruitment, resulting in the lowest stock abundances observed since 1970. Here, physical forcing, biological interactions, and the resultant growth response of post-smolt salmon are examined with a view to understanding the mechanism controlling recruitment. Sea surface temperature (SST) has increased in the Northeast Atlantic, with the pattern and seasonal change in SST negatively correlated with post-smolt survival during summer and in a region that spatially matches the post-smolt nursery. Constituents of the pelagic foodweb, including potential post-smolt food and plankton that may affect post-smolt forage, have changed on a decadal scale and correlate with salmon survival. Retrospective growth analyses of eight stock/sea age components show that post-smolt growth during summer is positively correlated with salmon survival and recruitment. The Atlantic Multidecadal Oscillation appears to be a more closely aligned climate forcing index than the North Atlantic Oscillation with respect to salmon recruitment. European Atlantic salmon recruitment appears to be governed by factors that affect the growth of post-smolts during their first summer at sea, including SST and forage abundances; growth appears to mediate survival by the functional relationship between post-smolts and their predators.


2015 ◽  
Vol 9 (1) ◽  
pp. 383-415 ◽  
Author(s):  
M. Trachsel ◽  
A. Nesje

Abstract. Glacier mass balances are mainly influenced by accumulation-season precipitation and ablation-season temperature. We use a suite of statistical models to determine the influence of accumulation-season precipitation and ablation-season temperature on annual mass balances of eight Scandinavian glaciers, ranging from near coastal, maritime glaciers to inland, continental glaciers. Accumulation-season precipitation is more important for maritime glaciers, whereas ablation-season temperature is more important for annual balances of continental glaciers. However, the importances are not stable in time. For instance, accumulation-season precipitation is more important than ablation-season temperature for all glaciers in the 30 year period 1968–1997. In this time period the Atlantic Multidecadal Oscillation (AMO) index was consistently negative and the North Atlantic Oscillation (NAO) Index was consistently positive between 1987 and 1995, both being favourable for glacier growth. Hence, the relative importance of precipitation and temperature for mass balances is possibly influenced by the AMO and the NAO. Climate sensitivities estimated by statistical models are similar to climate sensitivities based on degree-day models, but are lower than climate sensitivities of energy balance models. Hence, future projections of mass balances found with our models seem rather optimistic. Still, all average mass balances found for the years 2050 and 2100 are negative.


Climate ◽  
2019 ◽  
Vol 7 (3) ◽  
pp. 43 ◽  
Author(s):  
Knut Lehre Seip ◽  
Øyvind Grøn ◽  
Hui Wang

We show that oceanic cycle lengths persist across oceanic cyclic time-series by comparing cycles in series that come from “sister” measurements in the North Atlantic Ocean. These are the North Atlantic oscillation (NAO), the Atlantic multidecadal oscillation (AMO) and the Atlantic meridional overturning circulation (AMOC). The raw NAO series, which is an extremely noisy series in its raw format, showed cycles at 7, 13, 20, 26 and 34 years that were common with, or overlapped, the other two series, and across increasing degrees of smoothing of the NAO series. At the 1960 midpoint of the hiatus period 1943–1975, NAO was leading time-series to AMOC and AMO and AMO was a leading time-series to AMOC, but in 1975, at the end of the hiatus period, the leading relations were reversed.


Atmosphere ◽  
2019 ◽  
Vol 10 (12) ◽  
pp. 781 ◽  
Author(s):  
Yao Yao

The dipole structure of the North Atlantic Oscillation (NAO) is examined in this study by defining the tilt of the NAO dipole centers on synoptic time scales. All the positive NAO phase (NAO+) and negative NAO phase (NAO−) events are divided into three tilting types according to their definition; namely, northeast–southwest (NE–SW), north–south symmetric (N–S, not tilted), and northwest–southeast (NW–SE) tilting NAO events. Then, the associated surface air temperature (SAT), geopotential height, zonal wind, and SST (surface sea temperature) anomalies of each type are examined. It is found that, for different asymmetric NAO tilt types, the local SATs exhibit significantly different distributions. The zonal wind has a good match with the NAO dipole tilt, which also includes the positive feedback of the NAO circulation. The basic zonal flow that removes the NAO days also exhibits a clear tilt structure that favors the tilt of the NAO dipole. Moreover, it is found that the Atlantic Multidecadal Oscillation (AMO) may be an important factor affecting the tilt of the NAO dipole. The AMO index has a significant 15-year lead for the NAO index and basic zonal flow index, with a high correlation coefficient, which might be seen as a precondition that indicates the tilt of the NAO events, especially on decadal or multidecadal time scales. However, the physical mechanisms and processes are still not fully understood.


2017 ◽  
Vol 11 (5) ◽  
pp. 2149-2174 ◽  
Author(s):  
J. Rachel Carr ◽  
Heather Bell ◽  
Rebecca Killick ◽  
Tom Holt

Abstract. Novaya Zemlya (NVZ) has experienced rapid ice loss and accelerated marine-terminating glacier retreat during the past 2 decades. However, it is unknown whether this retreat is exceptional longer term and/or whether it has persisted since 2010. Investigating this is vital, as dynamic thinning may contribute substantially to ice loss from NVZ, but is not currently included in sea level rise predictions. Here, we use remotely sensed data to assess controls on NVZ glacier retreat between 1973/76 and 2015. Glaciers that terminate into lakes or the ocean receded 3.5 times faster than those that terminate on land. Between 2000 and 2013, retreat rates were significantly higher on marine-terminating outlet glaciers than during the previous 27 years, and we observe widespread slowdown in retreat, and even advance, between 2013 and 2015. There were some common patterns in the timing of glacier retreat, but the magnitude varied between individual glaciers. Rapid retreat between 2000 and 2013 corresponds to a period of significantly warmer air temperatures and reduced sea ice concentrations, and to changes in the North Atlantic Oscillation (NAO) and Atlantic Multidecadal Oscillation (AMO). We need to assess the impact of this accelerated retreat on dynamic ice losses from NVZ to accurately quantify its future sea level rise contribution.


2017 ◽  
Vol 30 (10) ◽  
pp. 3789-3805 ◽  
Author(s):  
Thomas L. Delworth ◽  
Fanrong Zeng ◽  
Liping Zhang ◽  
Rong Zhang ◽  
Gabriel A. Vecchi ◽  
...  

Abstract The relationship between the North Atlantic Oscillation (NAO) and Atlantic sea surface temperature (SST) variability is investigated using models and observations. Coupled climate models are used in which the ocean component is either a fully dynamic ocean or a slab ocean with no resolved ocean heat transport. On time scales less than 10 yr, NAO variations drive a tripole pattern of SST anomalies in both observations and models. This SST pattern is a direct response of the ocean mixed layer to turbulent surface heat flux anomalies associated with the NAO. On time scales longer than 10 yr, a similar relationship exists between the NAO and the tripole pattern of SST anomalies in models with a slab ocean. A different relationship exists both for the observations and for models with a dynamic ocean. In these models, a positive (negative) NAO anomaly leads, after a decadal-scale lag, to a monopole pattern of warming (cooling) that resembles the Atlantic multidecadal oscillation (AMO), although with smaller-than-observed amplitudes of tropical SST anomalies. Ocean dynamics are critical to this decadal-scale response in the models. The simulated Atlantic meridional overturning circulation (AMOC) strengthens (weakens) in response to a prolonged positive (negative) phase of the NAO, thereby enhancing (decreasing) poleward heat transport, leading to broad-scale warming (cooling). Additional simulations are used in which heat flux anomalies derived from observed NAO variations from 1901 to 2014 are applied to the ocean component of coupled models. It is shown that ocean dynamics allow models to reproduce important aspects of the observed AMO, mainly in the Subpolar Gyre.


2013 ◽  
Vol 10 (10) ◽  
pp. 12331-12371 ◽  
Author(s):  
A. Casanueva ◽  
C. Rodríguez-Puebla ◽  
M. D. Frías ◽  
N. González-Reviriego

Abstract. A growing interest in extreme precipitation has spread through the scientific community due to the effects of global climate change on the hydrological cycle and their threat on natural systems more than averaged climatic values. Understanding the variability of hydrological indices and their association to atmospheric processes could help to project the frequency and severity of extremes. This paper evaluates the trend of three precipitation extremes: the number of consecutive dry/wet days (CDD/CWD) and the quotient of the precipitation in days where daily precipitation exceeds the 95th percentile of the reference period and the total amount of precipitation (or contribution of very wet days, R95pTOT). The aim of this study is twofold. First, extreme indicators are compared against accumulated precipitation (RR) over Europe in terms of trends using non-parametric approaches. Second, we analyse the geographic opposite trends found over different parts of Europe by considering their relationships with large-scale processes, using different teleconnection patterns. The study is accomplished for the four seasons using the gridded E-OBS dataset developed within the EU ENSEMBLES project. Different patterns of variability were found for CWD and CDD in winter and summer, with north-south and east–west configurations, respectively. We consider physical factors to understand the extremes variability by linking large-scale processes and hydrological extremes. Opposite association with the North Atlantic Oscillation in winter and summer, and the relationships with the Scandinavian, East Atlantic patterns and El Niño/Southern Oscillation events in spring and autumn gave insight into the trend differences. Significant relationships were found between the Atlantic Multidecadal Oscillation and very extreme precipitation (R95pTOT) during the whole year. The largest extreme anomalies were analysed by composite maps using atmospheric variables and sea surface temperature. The association of extreme precipitation indices and large-scale variables found in this work could pave the way of new possibilities for the projection of extremes in downscaling techniques.


2019 ◽  
Vol 26 (3) ◽  
pp. 251-266 ◽  
Author(s):  
Jürgen Kurths ◽  
Ankit Agarwal ◽  
Roopam Shukla ◽  
Norbert Marwan ◽  
Maheswaran Rathinasamy ◽  
...  

Abstract. A better understanding of precipitation dynamics in the Indian subcontinent is required since India's society depends heavily on reliable monsoon forecasts. We introduce a non-linear, multiscale approach, based on wavelets and event synchronization, for unravelling teleconnection influences on precipitation. We consider those climate patterns with the highest relevance for Indian precipitation. Our results suggest significant influences which are not well captured by only the wavelet coherence analysis, the state-of-the-art method in understanding linkages at multiple timescales. We find substantial variation across India and across timescales. In particular, El Niño–Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD) mainly influence precipitation in the south-east at interannual and decadal scales, respectively, whereas the North Atlantic Oscillation (NAO) has a strong connection to precipitation, particularly in the northern regions. The effect of the Pacific Decadal Oscillation (PDO) stretches across the whole country, whereas the Atlantic Multidecadal Oscillation (AMO) influences precipitation particularly in the central arid and semi-arid regions. The proposed method provides a powerful approach for capturing the dynamics of precipitation and, hence, helps improve precipitation forecasting.


2019 ◽  
Vol 65 (252) ◽  
pp. 580-594 ◽  
Author(s):  
DAVID BROOKING BONAN ◽  
JOHN ERICH CHRISTIAN ◽  
KNUT CHRISTIANSON

ABSTRACTClimate variability can complicate efforts to interpret any long-term glacier mass-balance trends due to anthropogenic warming. Here we examine the impact of climate variability on the seasonal mass-balance records of 14 glaciers throughout Norway, Sweden and Svalbard using dynamical adjustment, a statistical method that removes orthogonal patterns of variability shared between each mass-balance record and sea-level pressure or sea-surface temperature predictor fields. For each glacier, the two leading predictor patterns explain 27–81% of the winter mass-balance variability and 24–69% of the summer mass-balance variability. The spatial and temporal structure of these patterns indicates that accumulation variability for all of the glaciers is strongly related to the North Atlantic Oscillation (NAO), with the Atlantic Multidecadal Oscillation (AMO) also modulating accumulation variability for the northernmost glaciers. Given this result, predicting glacier change in the region may depend on NAO and AMO predictability. In the raw mass-balance records, the glaciers throughout southern Norway have significantly negative summer trends, whereas the glaciers located closer to the Arctic have negative winter trends. Removing the effects of climate variability suggests it can bias trends in mass-balance records that span a few decades, but its effects on most of the longer-term mass-balance trends are minimal.


Sign in / Sign up

Export Citation Format

Share Document