Late Pleistocene environments of the Bighorn Basin, Wyoming-Montana, USA

2020 ◽  
pp. 1-14
Author(s):  
Thomas A. Minckley ◽  
Mark Clementz ◽  
Marcel Kornfeld ◽  
Mary Lou Larson ◽  
Judson B. Finley

Abstract Limited numbers of high-resolution records predate the Last Glacial Maximum (LGM) making it difficult to quantify the impacts of environmental changes prior to peak glaciation. We examined sediments from Last Canyon Cave in the Pryor Mountains of Montana and Wyoming to construct a >45 ka environmental record from pollen and stable isotope analysis. Artemisia pollen was hyper-abundant at the beginning of the record. Carbon isotope values of bulk organic matter (>40 ka) showed little variation (-25.3 ± 0.4‰) and were consistent with a arid C3 environment, similar to today. After 40 cal ka BP, Artemisia pollen decreased as herbaceous taxa increased toward the LGM. A significant decrease in δ13C values from 40–30 cal ka BP (~1.0‰) established a new baseline (-26.6 ± 0.2‰), suggesting cooler, seasonally wetter conditions prior to the LGM. These conditions persisted until variation in δ13C values increased significantly with post-glacial warming, marked by two spikes in values at 14.4 (-25.2‰) and 13.5 cal ka BP (-25.4‰) before δ13C values dropped to their lowest values (-26.9 ± 0.2‰) at the onset of the Younger Dryas (12.8 ka). These results provide insights into late Pleistocene conditions and ecological change in arid intermontane basins of the Rocky Mountains.

1993 ◽  
Vol 59 ◽  
pp. 1-15 ◽  
Author(s):  
T. E. G. Reynolds

Whilst research has shown many faults with the Movius scheme of a Middle Pleistocene group of Chopper/Chopping tool industries in South-East Asia, it remains a fact that pebble tool industries are still the dominant characteristic of the South-East Asian record. Exploration has now revealed hundreds of Late Pleistocene and Holocene sites in Mainland South-East Asia and these are archaeologically very different from cave sites in Europe. Further problems exist with the current nomenclature of later industries, such as the Hoabinhian and the Neolithic, for there is a large amount of overlap between such assemblages. Should such factors as economy, site location, etc. be used to assist clarification of such problems?This paper outlines some of these issues and reveals that the pebble tool tradition as it is widely known in South-East Asia is a relatively recent phenomenon dating back to the Last Glacial Maximum (LGM). A possible reason for the change from flake to pebble tool industrial types and in the visibility of sites is the environmental changes and rise in sea level which submerged over half the available land area in the region during the Late Pleistocene. An existing broad spectrum system of exploitation was likely to have been intensified as a result of this.


2021 ◽  
Author(s):  
Janina J. (Bösken) Nett ◽  
Frank Lehmkuhl ◽  
Erik J. Schaffernicht ◽  
Stephan Pötter ◽  
Philipp Schulte ◽  
...  

<p>Loess is an important archive of environmental change covering approximately 10% of the Earth’s terrestrial surface. Numerous studies have analyzed loess deposits and in particular loess-paleosol sequences. To analyze these sequences, it is important to know the spatial distribution of aeolian sediments, their location relative to potential source areas, and the geomorphology of the sink area. We investigated these aspects by compiling a new map of aeolian sediments in Europe using highly resolved geodata from 27 countries (Lehmkuhl et al., in press). To determine the most relevant factors for the European loess distribution, we further mapped potential source areas and divided the map into different facies domains. We analyzed the geomorphological and paleoenvironmental effects on the deposition and preservation of Late Pleistocene loess. Finally, the geodata-based results were compared with results obtained from high-resolved regional numerical climate-dust experiments for the Last Glacial Maximum (LGM) in Europe, which were performed with the LGM-adapted Weather Research and Forecasting model coupled with Chemistry (WRF-Chem-LGM; Schaffernicht et al., 2020).  Complementing the mapping-based findings with the WRF-Chem-LGM experiments results in an improved understanding of the Late Pleistocene loess landscape in Europe.</p><p> </p><p>References:</p><p>Lehmkuhl, F., Nett, J.J., Pötter, S., Schulte, P., Sprafke, T., Jary, Z., Antoine, P., Wacha, L., Wolf, D., Zerboni, A., Hošek, J., Marković, S.B., Obreht, I., Sümegi, P., Veres, D., Zeeden, C., Boemke, B., Schaubert, V., Viehweger, J., Hambach, U. (in press). Loess landscapes of Europe – Mapping, geomorphology, and zonal differentiation. Earth-Science Reviews. Doi: https://doi.org/10.1016/j.earscirev.2020.103496</p><p>Schaffernicht, E.J., Ludwig, P., Shao, Y., 2020. Linkage between dust cycle and loess of the last Glacial Maximum in Europe. Atmospheric Chemistry and Physics 20, 4969–4986. Doi:10.5194/acp-20-4969-2020.</p>


2018 ◽  
Vol 5 (6) ◽  
pp. 180145 ◽  
Author(s):  
Matthew J. Wooller ◽  
Émilie Saulnier-Talbot ◽  
Ben A. Potter ◽  
Soumaya Belmecheri ◽  
Nancy Bigelow ◽  
...  

Palaeoenvironmental records from the now-submerged Bering Land Bridge (BLB) covering the Last Glacial Maximum (LGM) to the present are needed to document changing environments and connections with the dispersal of humans into North America. Moreover, terrestrially based records of environmental changes are needed in close proximity to the re-establishment of circulation between Pacific and Atlantic Oceans following the end of the last glaciation to test palaeo-climate models for the high latitudes. We present the first terrestrial temperature and hydrologic reconstructions from the LGM to the present from the BLB's south-central margin. We find that the timing of the earliest unequivocal human dispersals into Alaska, based on archaeological evidence, corresponds with a shift to warmer/wetter conditions on the BLB between 14 700 and 13 500 years ago associated with the early Bølling/Allerød interstadial (BA). These environmental changes could have provided the impetus for eastward human dispersal at that time, from Western or central Beringia after a protracted human population standstill. Our data indicate substantial climate-induced environmental changes on the BLB since the LGM, which would potentially have had significant influences on megafaunal and human biogeography in the region.


1985 ◽  
Vol 24 (3) ◽  
pp. 285-294 ◽  
Author(s):  
A. B. Kazanskiy

A theory of the world's sea-level fluctuations during late Pleistocene time, based on the analysis of the general equation of the mass balance between ocean water and inland water, suggests that the exchange of water masses between the ocean and the land, where at continental glaciation periods water is stored as ice, occurs only as a result of global climatic changes. The tectonic effect is considered insignificant for late Pleistocene time. The proposed theory explains the asymmetric character and the sawlike shape of the curve of the main cycles of sea-level fluctuations. The theory also makes it possible to construct a diagram of sea-level fluctuations from the last glacial maximum to the present time. This diagram is governed by two parameters, the amount of the average “effective” evaporation from the world's ocean surface (evaporation minus rainfall) and the rate of the sea-level rise at the present time. The resulting theoretical curve agrees well with known estimates of sea level within the time span being considered. The comparison of the theoretical curve with these estimates eliminates the apparent discrepancy between data obtained by different methods: measurements of old coastline and the isotopic composition of bottom sediments.


2020 ◽  
Author(s):  
Soledad García-Gil ◽  
Víctor Cartelle ◽  
Castor Muñoz-Sobrino ◽  
Natalia Martínez-Carreño ◽  
Iria García-Moreiras

<p>Understanding coastal responses to relative sea level rise is key to be able to plan for future changes and develop a suitable managing strategy. The sedimentary record of the Late-Pleistocene and Holocene transgression provides a natural laboratory to study the long-term changes induced in coastal landscapes by the rapid sea level rise. As sea level rises, coastal morphology continually adapts towards equilibrium changing the landscape and reshaping the distribution of sedimentary environments.<br>The Ría de Ferrol is a confined tide-dominated incised valley located in the mesotidal passive Atlantic margin of western Galicia (NW Spain).  A multidisciplinary approach was used to identify the elements of sedimentary architecture within its sedimentary record since the Last Glacial Maximum. The sedimentary evolution was reconstructed combining seismic and sedimentary facies analysis with radiocarbon, geochemical and pollen data.<br>The Ría de Ferrol is characterised by a particular morphology with a rock-incised narrow channel in the middle of the basin (the Ferrol Strait) connecting an inner shallower sector with an outer deeper sector. The inner sector is characterised by low energetic conditions and is where the main fluvial inputs occur. The outer sector is connected to the shelf.<br>The main factor influencing the sedimentary evolution of the Ría de Ferrol incised valley was Late Pleistocene and Holocene sea-level rise. However, this evolution was modulated by the antecedent morphology, particularly once the middle strait became flooded during the Holocene transgression. Three main phases of evolution are distinguished: a fluvial valley drained by a braided river system, a tide-dominated estuary and a shallow marine basin (ria).<br>During the lowstand of the Last Glacial Maximum (ca 20 kyr BP), the ria was a fluvial valley whose sediments are mainly preserved in the inner sector. Sediments cores recovered sediments from ponds and stagnant areas, dated to be older than 10790-11170 cal yr BP.<br>During the Holocene, the basin turned into a tide-dominated estuary whose facies distribution was conditioned by the strait. The strait acted as a rock-bounded tidal inlet enhancing tidal erosion and deposition at both ends, where an ebb-tidal delta and tidal sandbanks appear. At this time, extensive tidal flats occupied most of the inner sector, dissected by estuarine channels of varied dimensions. Radiocarbon data showed ages from 8610-8910 to 5760-5940 cal yr BP.<br>An erosive episode is identified after 6 cal kyr BP with the formation of a ravinement surface. Wave and tidal energy were split by the middle strait. A wave ravinement surface is identified in the outer sector, while a coetaneous tidal ravinement surface occurs in the inner sector.<br>Slow sea-level rise after ca 4 ka BP finally forced rivers to retreat to the present position, causing the dispersion of their energy and leading to the final evolution of the area into a fully marine system.</p>


2018 ◽  
Vol 28 (2) ◽  
pp. 179-187 ◽  
Author(s):  
Ryohei Sawaura ◽  
Junmei Sawada ◽  
Takao Sato ◽  
Toshihiko Suzuki ◽  
Keiichi Sasaki

2004 ◽  
Vol 62 (3) ◽  
pp. 280-288 ◽  
Author(s):  
Kirsten M. Menking ◽  
Roger Y. Anderson ◽  
Nabil G. Shafike ◽  
Kamran H. Syed ◽  
Bruce D. Allen

Well-preserved shorelines in Estancia basin and a relatively simple hydrologic setting have prompted several inquiries into the basin's hydrologic balance for the purpose of estimating regional precipitation during the late Pleistocene. Estimates have ranged from 86% to 150% of modern, the disparity largely the result of assumptions about past temperatures. In this study, we use an array of models for surface-water runoff, groundwater flow, and lake energy balance to examine previously proposed scenarios for late Pleistocene climate. Constraints imposed by geologic evidence of past lake levels indicate that precipitation for the Last Glacial Maximum (LGM) may have doubled relative to modern values during brief episodes of colder and wetter climate and that annual runoff was as much as 15% of annual precipitation during these episodes.


2021 ◽  
Vol 288 (1950) ◽  
Author(s):  
Alba Rey-Iglesia ◽  
Adrian M. Lister ◽  
Paula F. Campos ◽  
Selina Brace ◽  
Valeria Mattiangeli ◽  
...  

Late Quaternary climatic fluctuations in the Northern Hemisphere had drastic effects on large mammal species, leading to the extinction of a substantial number of them. The giant deer ( Megaloceros giganteus ) was one of the species that became extinct in the Holocene, around 7660 calendar years before present. In the Late Pleistocene, the species ranged from western Europe to central Asia. However, during the Holocene, its range contracted to eastern Europe and western Siberia, where the last populations of the species occurred. Here, we generated 35 Late Pleistocene and Holocene giant deer mitogenomes to explore the genetics of the demise of this iconic species. Bayesian phylogenetic analyses of the mitogenomes suggested five main clades for the species: three pre-Last Glacial Maximum clades that did not appear in the post-Last Glacial Maximum genetic pool, and two clades that showed continuity into the Holocene. Our study also identified a decrease in genetic diversity starting in Marine Isotope Stage 3 and accelerating during the Last Glacial Maximum. This reduction in genetic diversity during the Last Glacial Maximum, coupled with a major contraction of fossil occurrences, suggests that climate was a major driver in the dynamics of the giant deer.


MycoKeys ◽  
2020 ◽  
Vol 65 ◽  
pp. 1-24
Author(s):  
Jaime Gasca-Pineda ◽  
Patricia Velez ◽  
Tsuyoshi Hosoya

During the Last Glacial Maximum (LGM), drastic environmental changes modified the topology of the Japanese Archipelago, impacting species distributions. An example is Fagus crenata, which has a present continuous distribution throughout Japan. However, by the end of the LGM it was restricted to southern refugia. Similarly, Dasyscyphella longistipitata (Leotiomycetes, Helotiales, Lachnaceae) occurs strictly on cupules of F. crenata, sharing currently an identical distribution. As the effects of the LGM remain poorly understood for saprobiotic microfungal species, herein we identified past structuring forces that shaped the current genetic diversity within D. longistipitata in relation to its host using a phylogeographic approach. We inferred present and past potential distributions through species distribution modeling, identifying environmental suitability areas in mid-southern Japan from which subsequent colonizations occurred. Our findings suggest that current high genetic diversity and lack of genetic structure within D. longistipitata are the result of recent multiple re-colonization events after the LGM.


Sign in / Sign up

Export Citation Format

Share Document