scholarly journals A POLYNOMIAL RING CONSTRUCTION FOR THE CLASSIFICATION OF DATA

2009 ◽  
Vol 79 (2) ◽  
pp. 213-225 ◽  
Author(s):  
A. V. KELAREV ◽  
J. L. YEARWOOD ◽  
P. W. VAMPLEW

AbstractDrensky and Lakatos (Lecture Notes in Computer Science, 357 (Springer, Berlin, 1989), pp. 181–188) have established a convenient property of certain ideals in polynomial quotient rings, which can now be used to determine error-correcting capabilities of combined multiple classifiers following a standard approach explained in the well-known monograph by Witten and Frank (Data Mining: Practical Machine Learning Tools and Techniques (Elsevier, Amsterdam, 2005)). We strengthen and generalise the result of Drensky and Lakatos by demonstrating that the corresponding nice property remains valid in a much larger variety of constructions and applies to more general types of ideals. Examples show that our theorems do not extend to larger classes of ring constructions and cannot be simplified or generalised.

Author(s):  
Pawan Kumar Chaurasia

This chapter conducts a critical review on ML and deep learning tools and techniques in the field of heart disease related to heart disease complexity, prediction, and diagnosis. Only specific papers are selected for the study to extract useful information, which stimulated a new hypothesis to understand further investigation of the heart disease patient.


Author(s):  
Shatakshi Singh ◽  
Kanika Gautam ◽  
Prachi Singhal ◽  
Sunil Kumar Jangir ◽  
Manish Kumar

The recent development in artificial intelligence is quite astounding in this decade. Especially, machine learning is one of the core subareas of AI. Also, ML field is an incessantly growing along with evolution and becomes a rise in its demand and importance. It transmogrified the way data is extracted, analyzed, and interpreted. Computers are trained to get in a self-training mode so that when new data is fed they can learn, grow, change, and develop themselves without explicit programming. It helps to make useful predictions that can guide better decisions in a real-life situation without human interference. Selection of ML tool is always a challenging task, since choosing an appropriate tool can end up saving time as well as making it faster and easier to provide any solution. This chapter provides a classification of various machine learning tools on the following aspects: for non-programmers, for model deployment, for Computer vision, natural language processing, and audio for reinforcement learning and data mining.


2020 ◽  
Vol 10 (19) ◽  
pp. 6683
Author(s):  
Andrea Murari ◽  
Emmanuele Peluso ◽  
Michele Lungaroni ◽  
Riccardo Rossi ◽  
Michela Gelfusa ◽  
...  

The inadequacies of basic physics models for disruption prediction have induced the community to increasingly rely on data mining tools. In the last decade, it has been shown how machine learning predictors can achieve a much better performance than those obtained with manually identified thresholds or empirical descriptions of the plasma stability limits. The main criticisms of these techniques focus therefore on two different but interrelated issues: poor “physics fidelity” and limited interpretability. Insufficient “physics fidelity” refers to the fact that the mathematical models of most data mining tools do not reflect the physics of the underlying phenomena. Moreover, they implement a black box approach to learning, which results in very poor interpretability of their outputs. To overcome or at least mitigate these limitations, a general methodology has been devised and tested, with the objective of combining the predictive capability of machine learning tools with the expression of the operational boundary in terms of traditional equations more suited to understanding the underlying physics. The proposed approach relies on the application of machine learning classifiers (such as Support Vector Machines or Classification Trees) and Symbolic Regression via Genetic Programming directly to experimental databases. The results are very encouraging. The obtained equations of the boundary between the safe and disruptive regions of the operational space present almost the same performance as the machine learning classifiers, based on completely independent learning techniques. Moreover, these models possess significantly better predictive power than traditional representations, such as the Hugill or the beta limit. More importantly, they are realistic and intuitive mathematical formulas, which are well suited to supporting theoretical understanding and to benchmarking empirical models. They can also be deployed easily and efficiently in real-time feedback systems.


Nowadays, Data Mining is used everywhere for extracting information from the data and in turn, acquires knowledge for decision making. Data Mining analyzes patterns which are used to extract information and knowledge for making decisions. Many open source and licensed tools like Weka, RapidMiner, KNIME, and Orange are available for Data Mining and predictive analysis. This paper discusses about different tools available for Data Mining and Machine Learning, followed by the description, pros and cons of these tools. The article provides details of all the algorithms like classification, regression, characterization, discretization, clustering, visualization and feature selection for Data Mining and Machine Learning tools. It will help people for efficient decision making and suggests which tool is suitable according to their requirement.


Author(s):  
Aman Paul ◽  
Daljeet Singh

Data mining is a technique that finds relationships and trends in large datasets to promote decision support. Classification is a data mining technique that maps data into predefined classes often referred as supervised learning because classes are determined before examining data. Different classification algorithms have been proposed for the effective classification of data. Among others, Weka is an open-source data mining software with which classification can be achieved. It is also well suited for developing new machine learning schemes. It allows users to quickly compare different machine learning methods on new datasets. It has several graphical user interfaces that enable easy access to the underlying functionality. CBA is a data mining tool which not only produces an accurate classifier for prediction, but it is also able to mine various forms of association rules. It has better classification accuracy and faster mining speed. It can build accurate classifiers from relational data and mine association rules from relational data and transactional data. CBA also has many other features like cross validation for evaluating classifiers and allows the user to view and to query the discovered rules.


2021 ◽  
Vol 13 (03) ◽  
pp. 09-22
Author(s):  
Ramasubramanian ◽  
Hariharan Shanmugasundaram

Classification is one among the data mining function that assigns items in a collection to target categories or collection of data to provide more accurate predictions and analysis. Classification using supervised learning method aims to identify the category of the class to which a new data will fall under. With the advancement of technology and increase in the generation of real-time data from various sources like Internet, IoT and Social media it needs more processing and challenging. One such challenge in processing is data imbalance. In the imbalanced dataset, majority classes dominate over minority classes causing the machine learning classifiers to be more biased towards majority classes and also most classification algorithm predicts all the test data with majority classes. In this paper, the author analysis the data imbalance models using big data and classification algorithm.


Sign in / Sign up

Export Citation Format

Share Document