scholarly journals Impact of cocoa flavanol consumption on blood pressure responsiveness to exercise

2010 ◽  
Vol 103 (10) ◽  
pp. 1480-1484 ◽  
Author(s):  
Narelle M. Berry ◽  
Kade Davison ◽  
Alison M. Coates ◽  
Jonathan D. Buckley ◽  
Peter R. C. Howe

Impaired endothelial vasodilatation may contribute to the exaggerated blood pressure (BP) responses to exercise in individuals who are overweight/obese. The present study investigated whether consumption of cocoa flavanols, which improve endothelium-dependent flow-mediated dilatation (FMD), can modify BP responsiveness to exercise. Twenty-one volunteers (eight females and thirteen males, 54·9 (se2·2) years, BMI 31·6 (se0·8) kg/m2, systolic BP 134 (se2) mmHg, diastolic BP (DBP) 87 (se2) mmHg) were randomised to consume single servings of either a high-flavanol (HF, 701 mg) or a low-flavanol (LF, 22 mg) cocoa beverage in a double-blind, cross-over design with 3–7-d washout between treatments. Two hours after cocoa consumption, FMD was measured, followed by continuous beat-to-beat assessment (Finapres™) of BP before and during 10 min of cycling at 75 % of age-predicted maximum heart rate. Averaged data from two assessments on each type of beverage were compared by analysis of covariance using pre-exercise BP as the covariate. Pre-exercise BP was similar after taking LF and HF (153 (se3)/88 (se3)v. 153 (se4)/87 (se2) mmHg, respectively,P>0·05). However, the BP response to exercise (area under BP curve) was attenuated by HF compared with LF. BP increases were 68 % lower for DBP (P = 0·03) and 14 % lower for mean BP (P = 0·05). FMD measurements were higher after taking HF than after taking LF (6·1 (se0·6) %v. 3·4 (se0·5) %,P < 0·001). By facilitating vasodilation and attenuating exercise-induced increases in BP, cocoa flavanols may decrease cardiovascular risk and enhance the cardiovascular benefits of moderate intensity exercise in at-risk individuals.

2018 ◽  
Vol 315 (3) ◽  
pp. H681-H686 ◽  
Author(s):  
Takuma Morishima ◽  
Yosuke Tsuchiya ◽  
Motoyuki Iemitsu ◽  
Eisuke Ochi

Resistance exercise impairs endothelial function, and this impairment is thought to be mediated by sustained elevation in blood pressure. Herein, we tested the hypothesis that resistance exercise-induced endothelial dysfunction would be prevented by high-intensity resistance exercise with low repetitions. This type of resistance exercise is known to induce temporal elevation in blood pressure due to low repetitions and a long resting period between sets. Thirteen young healthy subjects completed three randomized experimental trials as follows: 1) moderate-intensity exercise with moderate repetitions (moderate-moderate trial), 2) low-intensity exercise with high repetitions (low-high trial), and 3) high-intensity exercise with low repetitions (high-low trial). After baseline brachial artery flow-mediated dilation (FMD) and blood pressure measurements, subjects performed resistance exercise according to the different types of trials. Thereafter, brachial artery FMD and blood pressure measurements were repeated 10, 30, and 60 min after the exercise. Exercise-induced increases in blood flow and shear rate were significantly lower in the high-low trial than in the other two trials ( P < 0.05). Although systolic blood pressures were significantly elevated after exercise in all trials ( P < 0.05), the magnitudes of rise in blood pressure increase were significantly lower in the high-low trial than in the moderate-moderate and low-high trials ( P < 0.05). Moderate-moderate and low-high trials caused a significant impairment in brachial artery FMD ( P < 0.05), which could be prevented through high-intensity resistance exercise with low repetitions (  > 0.05). In conclusion, endothelial function was maintained by conducting high-intensity resistance exercise with low repetitions. NEW & NOTEWORTHY Data from the present study reveal that high-intensity resistance exercise with low repetitions can maintain endothelial function. Thus, this study provides the first evidence that the detrimental vascular effects of resistance exercise are preventable when resistance exercise is performed in high intensity with low repetitions. Listen to this article’s corresponding podcast at https://ajpheart.podbean.com/e/type-of-resistance-exercise-and-endothelial-function/ (Japanese version: https://ajpheart.podbean.com/e/japanese-language-podcast-type-of-resistance-exercise-and-endothelial-function/ ).


2018 ◽  
Vol 125 (1) ◽  
pp. 8-18 ◽  
Author(s):  
Lieselot Decroix ◽  
Cajsa Tonoli ◽  
Elodie Lespagnol ◽  
Constantino Balestra ◽  
Amandine Descat ◽  
...  

During exercise in hypoxia, O2 delivery to brain and muscle is compromised, and oxidative stress is elicited. Cocoa flavanols (CF) have antioxidant capacities and can increase blood flow by stimulating endothelial function. We aimed to examine the effects of 7-day CF intake on oxidative stress, nitric oxide production, and tissue oxygenation in response to exercise in normobaric hypoxia (14.3% O2). In a randomized, double-blind, cross-over study, 14 well-trained male cyclists completed four trials: exercise in normoxia or hypoxia, after 7-day CF or placebo intake. Flow-mediated dilation (FMD) was measured before intake of the last dose CF or placebo. One hundred minutes later, 20-min steady-state (SS; 45% V̇o2max) and 20-min time trial (TT) (cycling) were performed. Blood samples were taken. Prefrontal and muscular oxygenation was assessed by near-infrared spectroscopy. At baseline, FMD was increased by CF. Hypoxia increased exercise-induced elevations in lipid peroxidation and antioxidant capacity. CF suppressed exercise-induced lipid peroxidation but did not influence antioxidant capacity. At rest and during SS, prefrontal and muscular oxygenation was decreased by hypoxia. CF elevated prefrontal oxygenation but did not impact muscular oxygenation. During TT, hypoxia accelerated the exercise-induced decrease in prefrontal oxygenation, but not in muscular oxygenation. During TT, CF did not alter prefrontal and muscular oxygenation. CF did not change plasma nitrite, nitrate, and arginine:citrulline. During high-intensity exercise, CF improved neither tissue oxygenation nor performance in well-trained athletes. At rest and during moderate-intensity exercise, CF reduced exercise-induced lipid peroxidation and partially restored the hypoxia-induced decline in prefrontal oxygenation. NEW & NOTEWORTHY For the first time, we showed that CF had beneficial effects on endothelial function at rest, as well as on prefrontal oxygenation at rest and during moderate-intensity exercise, both in normoxia and hypoxia. Moreover, we showed that CF intake inhibited oxidative stress during exhaustive exercise in hypoxia.


2002 ◽  
Vol 10 (2) ◽  
pp. 71-77 ◽  
Author(s):  
Rainer Rauramaa ◽  
Raimo Kuhanen ◽  
Timo A. Lakka ◽  
Sari B. Väisänen ◽  
Pirjo Halonen ◽  
...  

We investigated the role of the angiotensinogen (AGT) gene M235T polymorphism in determining blood pressure (BP) response to moderate intensity exercise in a 6-yr randomized controlled trial in 140 middle-aged men. Sitting, supine, and standing blood pressures were measured annually. Of the randomized men, 86% participated in the trial for 6 yr. Submaximal cardiorespiratory fitness increased by 16% in the exercise group. In the M homozygotes, sitting systolic BP decreased by 1.0 mmHg in the exercise but increased by 14.6 mmHg in the reference group ( P = 0.007 for net effect). Sitting and supine diastolic BP decreased by 6.2 and 3.3 mmHg in the exercise but increased by 2.8 and 3.2 mmHg in the reference group ( P = 0.026 and 0.024 for net effects), respectively. Regular moderate intensity exercise attenuates aging-related increase in systolic BP and decreases diastolic BP among the M homozygotes of the AGT gene M235T polymorphism.


2019 ◽  
Vol 30 (2) ◽  
pp. 525-533 ◽  
Author(s):  
J J Steventon ◽  
C Foster ◽  
H Furby ◽  
D Helme ◽  
R G Wise ◽  
...  

Abstract Long-term exercise interventions have been shown to be a potent trigger for both neurogenesis and vascular plasticity. However, little is known about the underlying temporal dynamics and specifically when exercise-induced vascular adaptations first occur, which is vital for therapeutic applications. In this study, we investigated whether a single session of moderate-intensity exercise was sufficient to induce changes in the cerebral vasculature. We employed arterial spin labeling magnetic resonance imaging to measure global and regional cerebral blood flow (CBF) before and after 20 min of cycling. The blood vessels’ ability to dilate, measured by cerebrovascular reactivity (CVR) to CO2 inhalation, was measured at baseline and 25-min postexercise. Our data showed that CBF was selectively increased by 10–12% in the hippocampus 15, 40, and 60 min after exercise cessation, whereas CVR to CO2 was unchanged in all regions. The absence of a corresponding change in hippocampal CVR suggests that the immediate and transient hippocampal adaptations observed after exercise are not driven by a mechanical vascular change and more likely represents an adaptive metabolic change, providing a framework for exploring the therapeutic potential of exercise-induced plasticity (neural, vascular, or both) in clinical and aged populations.


1979 ◽  
Vol 57 (s5) ◽  
pp. 393s-396s ◽  
Author(s):  
L. A. Salako ◽  
A. O. Falase ◽  
A. Fadeke Aderounmu

1. The β-adrenoreceptor-blocking effects of pindolol were compared with those of propranolol and a placebo in a double-blind cross-over trial involving nine hypertensive African patients. 2. Heart rate, systolic blood pressure and diastolic blood pressure were measured at rest and immediately after exercise before and at intervals up to 6 h after oral administration of the drugs. In addition, plasma pindolol and propranolol concentrations were determined at the same intervals. 3. Pindolol diminished systolic blood pressure at rest and after exercise and antagonized exercise-induced tachycardia, but had no effect on resting heart rate. Propranolol diminished systolic blood pressure predominantly after exercise and reduced both resting and exercise heart rate. Both drugs had no effect on diastolic pressure. 4. The mean plasma concentration reached a peak at 2 h for each drug and this coincided with the interval at which maximal β-adrenoreceptor-blocking effect was observed.


2019 ◽  
Vol 51 (Supplement) ◽  
pp. 173-174
Author(s):  
McKenzie A. Williams ◽  
Erika Silva ◽  
Nicholas Carlini ◽  
Brandon Kistler ◽  
Bradley Fleenor ◽  
...  

1998 ◽  
Vol 275 (4) ◽  
pp. E655-E664 ◽  
Author(s):  
Amy E. Halseth ◽  
Nathalie Rhéaume ◽  
Allison B. Messina ◽  
Erica K. Reed ◽  
Mahesh G. Krishna ◽  
...  

The goal of this study was to determine how liver glutamine (Gln) metabolism adapts to acute exercise in the 18-h-fasted dogs ( n = 7) and in dogs that were glycogen depleted by a 42-h fast ( n = 8). For this purpose, sampling (carotid artery, portal vein, and hepatic vein) and infusion (vena cava) catheters and Doppler flow probes (portal vein, hepatic artery) were implanted under general anesthesia. At least 16 days later an experiment, consisting of a 120-min equilibration period, a 30-min basal sampling period, and a 150-min exercise period was performed. At the start of the equilibration period, a constant-rate infusion of [5-15N]Gln was initiated. Arterial Gln flux was determined by isotope dilution. Gut and liver Gln release into and uptake from the blood were calculated by combining stable isotopic and arteriovenous difference methods. The results of this study show that 1) in the 18-h-fasted dog, ∼10% and ∼35% of the basal Gln appearance in arterial blood is due to Gln release from the gut and liver, respectively, whereas ∼30% and ∼25% of the basal Gln disappearance is due to removal by these tissues; 2) extending the fast to 42 h does not affect basal arterial Gln flux or the contribution of the gut to arterial Gln fluxes but decreases hepatic Gln release, causing a greater retention of gluconeogenic carbon by the liver; 3) moderate-intensity exercise increases hepatic Gln removal from the blood regardless of fast duration but does not affect the hepatic release of Gln; and 4) Gln plays an important role in channeling nitrogen into the ureagenic pathway in the basal state, and this role is increased by ∼80% in response to exercise. These studies illustrate the quantitative importance of the splanchnic bed contribution to arterial Gln flux during exercise and the ability of the liver to acutely adapt to changes in metabolic requirements induced by the combined effects of fasting and exercise.


2020 ◽  
Vol 6 (1) ◽  
pp. e000672 ◽  
Author(s):  
Karani Magutah ◽  
Kihumbu Thairu ◽  
Nilesh Patel

AimTo investigate effect of <10 min moderate intensity exercise on cardiovascular function and maximal oxygen consumption (V˙ O2max) among sedentary adults.MethodsWe studied 53 sedentary urbanites aged ≥50 years, randomised into: (1) male (MS) and (2) female (FS) undertaking three short-duration exercise (5–10 min) daily, and (3) male (ML) and (4) female (FL) exercising 30–60 min 3–5 days weekly. Resting systolic blood pressure (SBP), diastolic blood pressure (DBP), heart rate and V˙ O2max were measured at baseline and 8 weekly for 24 weeks.ResultsAt baseline, 50% MS, 61.5% ML, 53.8% FS and 53.8% FL had SBP ≥120 mm Hg, and 14.3% MS, 53.8% ML, 23.1% FS and 38.5% FL had DBP ≥80 mm Hg. At 24 weeks, where SBP remained ≥120 mm Hg, values decreased from 147±19.2 to 132.3±9.6 mm Hg (50% of MS), from 144±12.3 to 128±7.0 mm Hg (23.1% of ML), from 143.1±9.6 to 128.0±7.0 mm Hg (53.8% of FS) and from 152.3±23.7 to 129±3.7 mm Hg (30.8% of FL). For DBP ≥80 mm Hg, MS and FS percentages maintained, but values decreased from 101±15.6 to 84.5±0.7 mm Hg (MS) and 99.0±3.6 to 87.7±4.9 mm Hg (FS). In ML and FL, percentage with DBP ≥80 mm Hg dropped to 15.4% (86.1±6.5 to 82.5±3.5 mm Hg) and (91.4±5.3 to 83.5±0.71 mm Hg). V˙ O2max increased from 26.1±4.4 to 32.0±6.2 for MS, from 25.8±5.1 to 28.8±5.4 for ML (group differences p=0.02), from 20.2±1.8 to 22.7±2.0 for FS and from 21.2±1.9 to 24.2±2.7 for FL (groups differences p=0.38).ConclusionAccumulated moderate intensity exercise bouts of <10 min confer similar-to-better cardiovascular and V˙ O2max improvements compared with current recommendations among sedentary adults.


2011 ◽  
Vol 18 (6) ◽  
pp. 824-830 ◽  
Author(s):  
Emmanuel G Ciolac ◽  
Edimar A Bocchi ◽  
Julia MD Greve ◽  
Guilherme V Guimarães

Exercise training is an effective intervention for treating and preventing hypertension, but its effects on heart rate (HR) response to exercise and cardiorespiratory fitness (CRF) of non-hypertensive offspring of hypertensive parents (FH+) has not been studied. We compared the effects of three times per week equal-volume high-intensity aerobic interval (AIT) and continuous moderate-intensity exercise (CME) on HR response to exercise and CRF of FH+. Forty-four young FH+ women (25.0 ± 4.4 years) randomized to control (CON; n = 12), AIT (80–90% of VO2MAX; n = 16), or CME (50–60% of VO2MAX; n = 16) performed a graded exercise test (GXT) before and after 16 weeks of follow-up to evaluate HR response to exercise and several parameters of CRF. Resting, maximal, and reserve HR did not change after the follow-up in all groups. HR recovery (difference between HRMAX and HR at 1 minute of GXT recovery phase) improved only after AIT (11.8 ± 4.9 vs. 20.6 ± 5.8 bpm, p < 0.01). Both exercise programmes were effective for improving CRF parameters, but AIT was more effective than CME for improving oxygen consumption at the respiratory compensation point (VO2RCP; 22.1% vs. 8.8%, p = 0.008) and maximal effort (VO2MAX; 15.8% vs. 8.0%, p = 0.036), as well as tolerance time (TT) to reach anaerobic threshold (TTAT; 62.0 vs. 37.7, p = 0.048), TTRCP (49.3 vs. 32.9, p = 0.032), and TTMAX (38.9 vs. 29.2, p = 0.042). Exercise intensity was an important factor in improving HR recovery and CRF of FH+women. These findings may have important implications for designing exercise-training programmes for the prevention of an inherited hypertensive disorder.


Sign in / Sign up

Export Citation Format

Share Document