scholarly journals Hippocampal Blood Flow Is Increased After 20 min of Moderate-Intensity Exercise

2019 ◽  
Vol 30 (2) ◽  
pp. 525-533 ◽  
Author(s):  
J J Steventon ◽  
C Foster ◽  
H Furby ◽  
D Helme ◽  
R G Wise ◽  
...  

Abstract Long-term exercise interventions have been shown to be a potent trigger for both neurogenesis and vascular plasticity. However, little is known about the underlying temporal dynamics and specifically when exercise-induced vascular adaptations first occur, which is vital for therapeutic applications. In this study, we investigated whether a single session of moderate-intensity exercise was sufficient to induce changes in the cerebral vasculature. We employed arterial spin labeling magnetic resonance imaging to measure global and regional cerebral blood flow (CBF) before and after 20 min of cycling. The blood vessels’ ability to dilate, measured by cerebrovascular reactivity (CVR) to CO2 inhalation, was measured at baseline and 25-min postexercise. Our data showed that CBF was selectively increased by 10–12% in the hippocampus 15, 40, and 60 min after exercise cessation, whereas CVR to CO2 was unchanged in all regions. The absence of a corresponding change in hippocampal CVR suggests that the immediate and transient hippocampal adaptations observed after exercise are not driven by a mechanical vascular change and more likely represents an adaptive metabolic change, providing a framework for exploring the therapeutic potential of exercise-induced plasticity (neural, vascular, or both) in clinical and aged populations.

2019 ◽  
Vol 30 (1) ◽  
pp. 101-112 ◽  
Author(s):  
Sophie C Andrews ◽  
Dylan Curtin ◽  
Ziarih Hawi ◽  
Jaeger Wongtrakun ◽  
Julie C Stout ◽  
...  

Abstract A single bout of cardiovascular exercise can enhance plasticity in human cortex; however, the intensity required for optimal enhancement is debated. We investigated the effect of exercise intensity on motor cortex synaptic plasticity, using transcranial magnetic stimulation. Twenty healthy adults (Mage = 35.10 ± 13.25 years) completed three sessions. Measures of cortico-motor excitability (CME) and inhibition were obtained before and after a 20-min bout of either high-intensity interval exercise, moderate-intensity continuous exercise, or rest, and again after intermittent theta burst stimulation (iTBS). Results showed that high-intensity interval exercise enhanced iTBS plasticity more than rest, evidenced by increased CME and intracortical facilitation, and reduced intracortical inhibition. In comparison, the effect of moderate-intensity exercise was intermediate between high-intensity exercise and rest. Importantly, analysis of each participant’s plasticity response profile indicated that high-intensity exercise increased the likelihood of a facilitatory response to iTBS. We also established that the brain-derived neurotrophic factor Val66Met polymorphism attenuated plasticity responses following high-intensity exercise. These findings suggest that high-intensity interval exercise should be considered not only when planning exercise interventions designed to enhance neuroplasticity, but also to maximize the therapeutic potential of non-invasive brain stimulation. Additionally, genetic profiling may enhance efficacy of exercise interventions for brain health.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Shing-Hong Liu ◽  
Da-Chuan Cheng ◽  
Jia-Jung Wang ◽  
Tzu-Hsin Lin ◽  
Kang-Ming Chang

Long-term endurance exercise could increase activity of parasympathetic nervous and decrease activity of sympathetic nervous at rest. However, previous studies all focused on the effect of endurance training on heart rate variability (HRV) for athletes or sedentary subjects. In Taiwan, elementary school teachers teaching and processing the children’s and administrative problems always stand and walk. They will sit down only when they review and correct the students’ home work. Thus, the goal of this study was to elucidate the beneficial effect of moderate intensity exercise on relieving mental load of elementary school teachers. There were 20 participants in the exercise group and another 20 participants in the nonexercise group. The exercising teachers performed 12 weeks of moderate intensity exercise training for an average of 30 minutes per day, 3 times per week. HRV was measured before and after the 4th, 6th, and 12th weeks. The time and frequency domain parameters of HRV all had significant increases between the beginning and after 12 weeks of training. However, the time and frequency domain parameters of HRV in the nonexercise group had significant decreases between the beginning and after 12 weeks of training. The long-term moderate exercises can relieve mental load of elementary school teachers. Moreover, age was the considerable factor affecting HRV in this study.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Tasuku Terada ◽  
Alanna Friesen ◽  
Baljot S. Chahal ◽  
Gordon J. Bell ◽  
Linda J. McCargar ◽  
...  

Aim. To explore the factors associated with exercise-induced acute capillary glucose (CapBG) changes in individuals with type 2 diabetes (T2D).Methods. Fifteen individuals with T2D were randomly assigned to energy-matched high intensity interval exercise (HI-IE) and moderate intensity continuous exercise (MI-CE) interventions and performed a designated exercise protocol 5 days per week for 12 weeks. The duration of exercise progressed from 30 to 60 minutes. CapBG was measured immediately before and after each exercise session. Timing of food and antihyperglycemic medication intake prior to exercise was recorded.Results. Overall, the mean CapBG was lowered by 1.9 mmol/L (P<0.001) with the change ranging from −8.9 to +2.7 mmol/L. Preexercise CapBG (44%;P<0.001), medication (5%;P<0.001), food intake (4%;P=0.043), exercise duration (5%;P<0.001), and exercise intensity (1%;P=0.007) were all associated with CapBG changes, explaining 59% of the variability.Conclusion. The greater reduction in CapBG seen in individuals with higher preexercise CapBG may suggest the importance of exercise in the population with elevated glycemia. Lower blood glucose can be achieved with moderate intensity exercise, but prolonging exercise duration and/or including brief bouts of intense exercise accentuate the reduction, which can further be magnified by performing exercise after meals and antihyperglycemic medication. This trial is registered with ClinicalTrial.govNCT01144078.


1999 ◽  
Vol 277 (6) ◽  
pp. H2341-H2347 ◽  
Author(s):  
Gishel New ◽  
Stephen J. Duffy ◽  
Richard W. Harper ◽  
Ian T. Meredith

We have previously shown that chronic estrogen therapy improves endothelium-dependent vasodilation in the resistance vessels of biological males. Whether this is nitric oxide (NO) mediated and whether estrogen improves metabolic vasodilation is unknown. Resting forearm blood flow (FBF), ACh-induced vasodilation, and functional hyperemic blood flow (exercise) were assessed before and after the inhibition of NO with N G-monomethyl-l-arginine (l-NMMA) in 15 male-to-female transsexuals prescribed estrogen and in 14 age-matched males. Resting FBF was similar in the two groups and was similarly ( P = 0.44) but significantly reduced by 48% after infusion ofl-NMMA ( P < 0.0001). The ACh dose-response relationship was shifted upward and to the left in the transsexual compared with the male group ( P < 0.01). After the inhibition of NO, however, the difference in the ACh dose-response curve between the two groups was abolished ( P= 0.15). Peak functional hyperemic blood flow was similar for the two groups ( P = 0.94).l-NMMA produced a significant ( P < 0.01) but similar ( P = 0.64) reduction in peak hyperemia in the two groups. The volume of blood repaid to the forearm 1 and 5 min after exercise was also reduced by l-NMMA ( P < 0.0001); however, there were no differences between the two groups. This suggests that ACh-mediated NO-dependent vasodilation may be more sensitive to the effects of chronic estrogen than exercise-induced vasodilation. Long-term estrogen does not appear to improve exercise-induced metabolic vasodilation in biological males, despite the fact that NO contributes to this process.


2020 ◽  
Vol 9 (2) ◽  
pp. 310-315
Author(s):  
Cornelius Coli ◽  
Gadis Meinar Sari ◽  
Purwo Sri Rejeki

This study aims to analyze acute moderate intensity exercise decreases oxygen saturation in obese women. True experiment with a randomized control group design posttest-only design using 14 obese women aged 19-24 years, body mass index 27-33 kg/m2, percentage body fat (PBF) above 30 % and fasting blood glucose (FBG) below 100 mg/dL, normal hemoglobin, normal systolic and diastolic blood pressure, normal resting heart rate and randomly divided into two groups, namely CON (n=7, control without intervention) and MIE (n=7, moderate intensity exercise). Moderate intensity exercise interventions carried out for 40 minutes using a treadmill. Blood sampling is done 10 minutes after the intervention. Measurement of oxygen saturation using a Pulse Oximeter. The results obtained mean oxygen saturation at CON (98.428±0.534) % and MIE (96.571±0.975) % (p=0.001). Based on the results of the study concluded that moderate moderate intensity acute exercise reduces oxygen saturation in obese women.


2014 ◽  
Vol 2 (1) ◽  
Author(s):  
Roy Johannes ◽  
Diana S. Purwanto ◽  
Stefana H. M. Kaligis

Abstract: Chloride as the major anion in the extracellular fluid plays a role in maintaining fluid and electrolyte balance. One of the factors that influence the levels of serum chloride is sweating during physical exercise. This study aimed to determine  the differenceof serum chloride levels before and after moderate intensity exercise in the students of Faculty of Medicine year 2010 Sam Ratulangi University. This is a pre-exsperimental research with pretest and posttest design with 30 students as samples. The samples were chosen using purposive sampling method and the results were analyzed using paired-sample t-test. The results showed the average levels of serum chloride before and after moderate intensity exercise are 106,10 mEq/L and 107,37 mEq/L while paired-sample t-test significance value (p) is 0,000. From the results can be concluded that there is a significant differences in serum chloride levels before and after moderate intensity exercise in the students of Faculty of Medicine year 2010 Sam Ratulangi University. Keyword: serum chloride, moderate intensity exercise, student of Faculty of Medicine Sam Ratulangi University   Abstrak: Klorida sebagai anion utama dalam cairan ekstraselular berperan dalammemelihara keseimbangan cairan dan elektrolit. Salah satu faktor yang mempengaruhi kadar klorida serum yaitu keluarnya keringat saat melakukan latihan fisik. Tujuan penelitian ini untuk mengetahui perbedaan kadar klorida serum sebelum dan sesudah latihan fisik intensitas sedang pada mahasiswa Fakultas Kedokteran Universitas Sam Ratulangi angkatan 2010. Penelitian ini merupakan penelitian pre-eksperimental dengan pretest-posttest design, dengan jumlah sampel 30 orang. Sampel penelitian dipilih dengan purposive sampling dan dianalisis dengan uji t berpasangan. Hasil yang diperoleh menunjukkan bahwa rata-rata kadar klorida serum sebelum melakukan latihan fisik intensitas sedang adalah 106,10mEq/L, sedangkan rata-rata kadar klorida serum sesudah melakukan latihan fisik intensitas sedang adalah 107,37 mEq/L. Nilai signifikansi uji t berpasangan pada penelitian ini adalah p=0,000. Dari penelitian ini dapat disimpulkan bahwa terdapat perbedaan signifikan kadar klorida serum sebelum dan sesudah latihan fisik intensitas sedang pada mahasiswa Fakultas Kedokteran Universitas Sam Ratulangi Angkatan 2010. Kata kunci: klorida serum, latihan fisik intensitas sedang, mahasiswa Fakultas Kedokteran Universitas Sam Ratulangi


2017 ◽  
Vol 122 (5) ◽  
pp. 1125-1133 ◽  
Author(s):  
Sandra A. Billinger ◽  
Jesse C. Craig ◽  
Sarah J. Kwapiszeski ◽  
Jason-Flor V. Sisante ◽  
Eric D. Vidoni ◽  
...  

The dynamic response to a stimulus such as exercise can reveal valuable insights into systems control in health and disease that are not evident from the steady-state perturbation. However, the dynamic response profile and kinetics of cerebrovascular function have not been determined to date. We tested the hypotheses that bilateral middle cerebral artery blood flow mean velocity (MCAV) increases exponentially following the onset of moderate-intensity exercise in 10 healthy young subjects. The MCAV response profiles were well fit to a delay (TD) + exponential (time constant, τ) model with substantial agreement for baseline [left (L): 69, right (R): 64 cm/s, coefficient of variation (CV) 11%], response amplitude (L: 16, R: 13 cm/s, CV 23%), TD (L: 54, R: 52 s, CV 9%), τ (L: 30, R: 30 s, CV 22%), and mean response time (MRT) (L: 83, R: 82 s, CV 8%) between left and right MCAV as supported by the high correlations (e.g., MRT r = 0.82, P < 0.05) and low CVs. Test-retest reliability was high with CVs for the baseline, amplitude, and MRT of 3, 14, and 12%, respectively. These responses contrasted markedly with those of three healthy older subjects in whom the MCAV baseline and exercise response amplitude were far lower and the kinetics slowed. A single older stroke patient showed baseline ipsilateral MCAV that was lower still and devoid of any exercise response whatsoever. We conclude that kinetics analysis of MCAV during exercise has significant potential to unveil novel aspects of cerebrovascular function in health and disease. NEW & NOTEWORTHY Resolution of the dynamic stimulus-response profile provides a greater understanding of the underlying the physiological control processes than steady-state measurements alone. We report a novel method of measuring cerebrovascular blood velocity (MCAv) kinetics under ecologically valid conditions from rest to moderate-intensity exercise. This technique reveals that brain blood flow increases exponentially following the onset of exercise with 1) a strong bilateral coherence in young healthy individuals, and 2) a potential for unique age- and disease-specific profiles.


1986 ◽  
Vol 61 (1) ◽  
pp. 210-214 ◽  
Author(s):  
F. Haas ◽  
N. Levin ◽  
S. Pasierski ◽  
M. Bishop ◽  
K. Axen

This study assessed reduction in expiratory function in 12 asthmatic subjects both after 5 min of cold air provocation (CAP) with dry air conditioned to approximately 0 degrees C and after exercise (to 85% of predicted maximum heart rate) while breathing ambient room air (approximately 21 degrees C and 40% relative humidity). These assessments were done both before and after the following training protocol. Three 5-min periods of isocapnic cold air hyperpnea separated by 5-min rest periods were performed breathing 0 degrees to -10 degrees C air, for 36 sessions over 12 wk. As expected, pretraining expiratory function was significantly reduced (P less than 0.001) after both CAP and exercise. The posttraining reduction in expiratory function after CAP and exercise, however, was significantly less pronounced (largest P less than 0.05). These data support our hypothesis that repeated bouts of cold air challenge result in airway acclimatization to cold air and consequent decrease in exercise-induced bronchospasm. Acclimatization may result directly either by habituation of the airways or by vasodilation leading to increased bronchial blood flow and consequent reduced airway cooling. An unanticipated finding, though, is that repeated cold air challenge may also cause long-term inflammatory changes in the airways. A significant percentage of subjects experienced reduced base-line pulmonary function and overall exacerbation of asthma symptoms during the training period.


2006 ◽  
Vol 101 (1) ◽  
pp. 289-297 ◽  
Author(s):  
D. Merrill Dane ◽  
Connie C. W. Hsia ◽  
Eugene Y. Wu ◽  
Richard T. Hogg ◽  
Deborah C. Hogg ◽  
...  

The spleen acts as an erythrocyte reservoir in highly aerobic species such as the dog and horse. Sympathetic-mediated splenic contraction during exercise reversibly enhances convective O2 transport by increasing hematocrit, blood volume, and O2-carrying capacity. Based on theoretical interactions between erythrocytes and capillary membrane (Hsia CCW, Johnson RL Jr, and Shah D. J Appl Physiol 86: 1460–1467, 1999) and experimental findings in horses of a postsplenectomy reduction in peripheral O2-diffusing capacity (Wagner PD, Erickson BK, Kubo K, Hiraga A, Kai M, Yamaya Y, Richardson R, and Seaman J. Equine Vet J 18, Suppl: 82–89, 1995), we hypothesized that splenic contraction also augments diffusive O2 transport in the lung. Therefore, we have measured lung diffusing capacity (DlCO) and its components during exercise by a rebreathing technique in six adult foxhounds before and after splenectomy. Splenectomy eliminated exercise-induced polycythemia, associated with a 30% reduction in maximal O2 uptake. At any given pulmonary blood flow, DlCO was significantly lower after splenectomy owing to a lower membrane diffusing capacity, whereas pulmonary capillary blood volume changed variably; microvascular recruitment, indicated by the slope of the increase in DlCO with respect to pulmonary blood flow, was also reduced. We conclude that splenic contraction enhances both convective and diffusive O2 transport and provides another compensatory mechanism for maintaining alveolar O2 transport in the presence of restrictive lung disease or ambient hypoxia.


1995 ◽  
Vol 79 (4) ◽  
pp. 1112-1119 ◽  
Author(s):  
W. L. Kenney ◽  
C. W. Ho

During dynamic exercise in warm environments, requisite increases in skin and active muscle blood flows are supported by increasing cardiac output (Qc) and redistributing flow away from splanchnic and renal circulations. To examine the effect of age on these responses, six young (Y; 26 +/- 2 yr) and six older (O; 64 +/- 2 yr) men performed upright cycle exercise at 35 and 60% of peak O2 consumption (VO2peak) in 22 and 36 degrees C environments. To further isolate age, the two age groups were closely matched for VO2peak, weight, surface area, and body composition. Measurements included heart rate, Qc (CO2 rebreathing), skin blood flow (from increases in forearm blood flow (venous occlusion plethysmography), splanchnic blood flow (indocyanine green dilution), renal blood flow (p-amino-hippurate clearance), and plasma norepinephrine concentration. There were no significant age differences in Qc; however, in both environments the O group maintained Qc at a higher stroke volume and lower heart rate. At 60% VO2peak, forearm blood flow was significantly lower in the O subjects in each environment. Splanchnic blood flow fell (by 12–14% in both groups) at the lower intensity, then decreased to a greater extent at 60% VO2peak in Y than in O subjects (e.g., -45 +/- 2 vs. -33 +/- 3% for the hot environment, P < 0.01). Renal blood flow was lower at rest in the O group, remained relatively constant at 35% VO2peak, then decreased by 20–25% in both groups at 60% VO2peak. At 60% VO2peak, 27 and 37% more total blood flow was redistributed away from these two circulations in the Y than in the O group at 22 and 36 degrees, respectively. It was concluded that the greater increase in skin blood flow in Y subjects is partially supported by a greater redistribution of blood flow away from splanchnic and renal vascular beds.


Sign in / Sign up

Export Citation Format

Share Document