scholarly journals Dietary protein – its role in satiety, energetics, weight loss and health

2012 ◽  
Vol 108 (S2) ◽  
pp. S105-S112 ◽  
Author(s):  
Margriet S. Westerterp-Plantenga ◽  
Sofie G. Lemmens ◽  
Klaas R. Westerterp

Obesity is a serious health problem because of its co-morbidities. The solution, implying weight loss and long-term weight maintenance, is conditional on: (i) sustained satiety despite negative energy balance, (ii) sustained basal energy expenditure despite BW loss due to (iii) a sparing of fat-free mass (FFM), being the main determinant of basal energy expenditure. Dietary protein has been shown to assist with meeting these conditions, since amino acids act on the relevant metabolic targets. This review deals with the effects of different protein diets during BW loss and BW maintenance thereafter. Potential risks of a high protein diet are dealt with. The required daily intake is 0·8–1·2 g/kg BW, implying sustaining the original absolute protein intake and carbohydrate and fat restriction during an energy-restricted diet. The intake of 1·2 g/kg BW is beneficial to body composition and improves blood pressure. A too low absolute protein content of the diet contributes to the risk of BW regain. The success of the so-called ‘low carb’ diet that is usually high in protein can be attributed to the relatively high-protein content per se and not to the relatively lower carbohydrate content. Metabolic syndrome parameters restore, mainly due to BW loss. With the indicated dosage, no kidney problems have been shown in healthy individuals. In conclusion, dietary protein contributes to the treatment of obesity and the metabolic syndrome, by acting on the relevant metabolic targets of satiety and energy expenditure in negative energy balance, thereby preventing a weight cycling effect.

1992 ◽  
Vol 73 (5) ◽  
pp. 1815-1819 ◽  
Author(s):  
K. R. Westerterp ◽  
B. Kayser ◽  
F. Brouns ◽  
J. P. Herry ◽  
W. H. Saris

Weight loss is a well-known phenomenon at high altitude. It is not clear whether the negative energy balance is due to anorexia only or an increased energy expenditure as well. The objective of this study was to gain insight into this matter by measuring simultaneously energy intake, energy expenditure, and body composition during an expedition to Mt. Everest. Subjects were two women and three men between 31 and 42 yr of age. Two subjects were observed during preparation at high altitude, including a 4-day stay in the Alps (4,260 m), and subsequently during four daytime stays in a hypobaric chamber (5,600–7,000 m). Observations at high altitude on Mt. Everest covered a 7- to 10-day interval just before the summit was reached in three subjects and included the summit (8,872 m) in a fourth. Energy intake (EI) was measured with a dietary record, average daily metabolic rate (ADMR) with doubly labeled water, and resting metabolic rate (RMR) with respiratory gas analysis. Body composition was measured before and after the interval from body mass, skinfold thickness, and total body water. Subjects were in negative energy balance (-5.7 +/- 1.9 MJ/day) in both situations, during the preparation in the Alps and on Mt. Everest. The loss of fat mass over the observation intervals was 1.4 +/- 0.7 kg, on average two-thirds of the weight loss (2.2 +/- 1.5 kg), and was significantly correlated with the energy deficit (r = 0.84, P < 0.05). EI on Mt. Everest was 9–13% lower than during the preparation in the Alps.(ABSTRACT TRUNCATED AT 250 WORDS)


2021 ◽  
Author(s):  
Patrick Mullie ◽  
Pieter Maes ◽  
Laurens van Veelen ◽  
Damien Van Tiggelen ◽  
Peter Clarys

ABSTRACT Introduction Adequate energy supply is a prerequisite for optimal performances and recovery. The aims of the present study were to estimate energy balance and energy availability during a selection course for Belgian paratroopers. Methods Energy expenditure by physical activity was measured with accelerometer (ActiGraph GT3X+, ActiGraph LLC, Pensacola, FL, USA) and rest metabolic rate in Cal.d−1 with Tinsley et al.’s equation based on fat-free mass = 25.9 × fat-free mass in kg + 284. Participants had only access to the French individual combat rations of 3,600 Cal.d−1, and body fat mass was measured with quadripolar impedance (Omron BF508, Omron, Osaka, Japan). Energy availability was calculated by the formula: ([energy intake in foods and beverages] − [energy expenditure physical activity])/kg FFM−1.d−1, with FFM = fat-free mass. Results Mean (SD) age of the 35 participants was 25.1 (4.18) years, and mean (SD) percentage fat mass was 12.0% (3.82). Mean (SD) total energy expenditure, i.e., the sum of rest metabolic rate, dietary-induced thermogenesis, and physical activity, was 5,262 Cal.d−1 (621.2), with percentile 25 at 4,791 Cal.d−1 and percentile 75 at 5,647 Cal.d−1, a difference of 856 Cal.d−1. Mean daily energy intake was 3,600 Cal.d−1, giving a negative energy balance of 1,662 (621.2) Cal.d−1. Mean energy availability was 9.3 Cal.kg FFM−1.d−1. Eleven of the 35 participants performed with a negative energy balance of 2,000 Cal.d−1, and only five participants out of 35 participants performed at a less than 1,000 Cal.d−1 negative energy balance level. Conclusions Energy intake is not optimal as indicated by the negative energy balance and the low energy availability, which means that the participants to this selection course had to perform in suboptimal conditions.


2001 ◽  
Vol 26 (1) ◽  
pp. 133-145 ◽  
Author(s):  
W.R. Butler

AbstractIncreased genetic potential for milk production has been associated with a decline in fertility of lactating cows. Following parturition the nutritional requirements increase rapidly with milk production and result in negative energy balance (NEBAL). NEBAL delays the time of first ovulation thereby affecting ovarian cycles before and during the subsequent breeding period The effects of NEBAL on reinitiation of ovulation are manifested through inhibition of LH pulse frequency and low levels of glucose, insulin and IGF-I in blood that collectively restrain oestrogen production by dominant follicles. Upregulation of LH pulses and peripheral IGF-I in association with the NEBAL nadir increases the likelihood that emerging dominant follicles will ovulate. The legacy of NEBAL is reduced fertility after insemination in conjunction with reduced serum progesterone concentrations. Diets high in crude protein support high milk yield, but may be detrimental to reproductive performance. Depending upon protein quantity and composition, serum concentrations of progesterone may be lower and the uterine luminal environment is altered. High protein intake is correlated with plasma urea concentrations that are inversely related to uterine pH and fertility. The direct effects of high dietary protein and plasma urea on embryo quality and development in cattle are inconsistent. In conclusion, the poor fertility of high producing dairy cows reflects the combined effects of a uterine environment that is dependent on progesterone, but has been rendered suboptimal for embryo development by antecedent effects of negative energy balance and may be further compromised by the effects of urea resultingfrom intake of high dietary protein.


1998 ◽  
Vol 10 (1) ◽  
pp. 65 ◽  
Author(s):  
Stephen J. Judd

Animal reproduction is impaired when intake of energy is so restricted that activities essential to life are threatened; this is seen as a homeostatic adjustment that restricts wasteful energy expenditure. Fasting or exercising to a degree requiring considerable energy expenditure has major effects on the hypothalamus, including activation of corticotrophin-releasing factor (CRF) neurons, suppression of thyrotrophin-releasing hormone synthesis, and increased growth hormone secretion; these are associated with increased concentrations of hypothalamic neuropeptide Y mRNA and are corrected by administration of leptin, an adipose-tissue protein with a tertiary structure similar to the cytokine interleukin-2. This response to fasting results from a disordered pattern of activity in the gonadotrophin-releasing hormone (GnRH) pacemaker, characterized by reduced luteinizing hormone pulsatility, particularly during daytime. Animal studies have suggested that the response depends on an intact afferent vagal system from the stomach and the presence of oestrogen. Noradrenergic neurons forming the A2 group increase the activity of CRF neurons that, in turn, inhibit GnRH pulsatility. Reproductive impairment due to fasting is reversed by leptin, and abnormalities of leptin are described in individuals who fast or who develop exercise-induced amenorrhoea. This paper discusses these changes induced by negative energy balance and speculates on the involvement of leptin as a contributor to these abnormalities.


2019 ◽  
Vol 78 (3) ◽  
pp. 279-289 ◽  
Author(s):  
Nuno Casanova ◽  
Kristine Beaulieu ◽  
Graham Finlayson ◽  
Mark Hopkins

This review examines the metabolic adaptations that occur in response to negative energy balance and their potential putative or functional impact on appetite and food intake. Sustained negative energy balance will result in weight loss, with body composition changes similar for different dietary interventions if total energy and protein intake are equated. During periods of underfeeding, compensatory metabolic and behavioural responses occur that attenuate the prescribed energy deficit. While losses of metabolically active tissue during energy deficit result in reduced energy expenditure, an additional down-regulation in expenditure has been noted that cannot be explained by changes in body tissue (e.g. adaptive thermogenesis). Sustained negative energy balance is also associated with an increase in orexigenic drive and changes in appetite-related peptides during weight loss that may act as cues for increased hunger and food intake. It has also been suggested that losses of fat-free mass (FFM) could also act as an orexigenic signal during weight loss, but more data are needed to support these findings and the signalling pathways linking FFM and energy intake remain unclear. Taken together, these metabolic and behavioural responses to weight loss point to a highly complex and dynamic energy balance system in which perturbations to individual components can cause co-ordinated and inter-related compensatory responses elsewhere. The strength of these compensatory responses is individually subtle, and early identification of this variability may help identify individuals that respond well or poorly to an intervention.


2020 ◽  
Vol 8 (4_suppl3) ◽  
pp. 2325967120S0020
Author(s):  
Julie A. Young ◽  
Jessica Napolitano ◽  
Mitchell J. Rauh ◽  
Jeanne Nichols ◽  
Anastasia N. Fischer

BACKGROUND: Prior studies have shown that vital signs such as heart rate, blood pressure and body temperature are depressed in patients with an eating disorder who have experienced a negative energy balance for a significant amount of time. More recently, a negative energy balance has been the focus of Relative Energy Deficiency in Sport (RED-S), which links energy availability to the health of multiple body systems in adults in as little as 5 days with a negative energy balance. High rates of disordered eating patterns have been reported in high school athletes. As adolescents grow, the consequences of a negative energy balance can be significant and potentially irreversible. Thus, vital signs may help clinicians quickly evaluate a patient’s energy status or highlight them for further evaluation. PURPOSE: The purpose of this study was to examine energy balance and vital signs in a cohort of adolescents who were seen by a sports dietitian to gain weight or optimize sports performance. METHODS: We evaluated 240 subjects, 83% female, average age 15.0±2.3 years. Heart rate and blood pressure were measured with a dynamometer in a seated position. Body temperature was measured orally. Height and weight were recorded. BMI was then calculated and evaluated by percentile. Energy intake was assessed using a 3-day food recall log. Energy expenditure was calculated using Harris Benedict Equation and combined with estimated exercise energy expenditure. Energy balance was estimated as energy intake minus energy expenditure. RESULTS: Average age was 15.03±2.71. 85% were female. 30% were below the 15th percentile for BMI. There were no differences in BMI percentiles between males and females (p=0.99). The average heart rate was 71.62±13.4 bpm and 19% were below the 10th percentile for heart rate. Average systolic blood pressure was 110±11 mm Hg and average diastolic blood pressure was 62±7 mmHg. Average temperature was 98.1±.4 degrees F. 88%were in a negative energy balance with an average energy deficit of 552±511 calories. There were no statistically significant differences in energy balance between males and females (p=0.08). CONCLUSIONS: A disproportional number of children with low BMI and heart rate percentiles was observed, which may indicate a long-standing energy deficiency. We also found a high proportion of adolescents who experienced a standalone negative energy balance itself or vital signs consistent with a negative energy balance. Additional studies are needed to study the relationships between energy deficit magnitude and duration in adolescents and children.


PLoS ONE ◽  
2013 ◽  
Vol 8 (7) ◽  
pp. e67786 ◽  
Author(s):  
Pilou L. H. R. Janssens ◽  
Rick Hursel ◽  
Eveline A. P. Martens ◽  
Margriet S. Westerterp-Plantenga

1999 ◽  
Vol 276 (6) ◽  
pp. R1739-R1748 ◽  
Author(s):  
T. P. Stein ◽  
M. J. Leskiw ◽  
M. D. Schluter ◽  
R. W. Hoyt ◽  
H. W. Lane ◽  
...  

The objectives of this study were as follows: 1) to measure human energy expenditure (EE) during spaceflight on a shuttle mission by using the doubly labeled water (DLW) method; 2) to determine whether the astronauts were in negative energy balance during spaceflight; 3) to use the comparison of change in body fat as measured by the intake DLW EE,18O dilution, and dual energy X-ray absorptiometry (DEXA) to validate the DLW method for spaceflight; and 4) to compare EE during spaceflight against that found with bed rest. Two experiments were conducted: a flight experiment ( n = 4) on the 16-day 1996 life and microgravity sciences shuttle mission and a 6° head-down tilt bed rest study with controlled dietary intake ( n = 8). The bed rest study was designed to simulate the flight experiment and included exercise. Two EE determinations were done before flight (bed rest), during flight (bed rest), and after flight (recovery). Energy intake and N balance were monitored for the entire period. Results were that body weight, water, fat, and energy balance were unchanged with bed rest. For the flight experiment, decreases in weight (2.6 ± 0.4 kg, P < 0.05) and N retention (−2.37 ± 0.45 g N/day, P < 0.05) were found. Dietary intake for the four astronauts was reduced in flight (3,025 ± 180 vs. 1,943 ± 179 kcal/day, P < 0.05). EE in flight was 3,320 ± 155 kcal/day, resulting in a negative energy balance of 1,355 ± 80 kcal/day (−15.7 ± 1.0 kcal ⋅ kg−1 ⋅ day−1, P < 0.05). This corresponded to a loss of 2.1 ± 0.4 kg body fat, which was within experimental error of the fat loss determined by18O dilution (−1.4 ± 0.5 kg) and DEXA (−2.4 ± 0.4 kg). All three methods showed no change in body fat with bed rest. In conclusion, 1) the DLW method for measuring EE during spaceflight is valid, 2) the astronauts were in severe negative energy balance and oxidized body fat, and 3) in-flight energy (E) requirements can be predicted from the equation: E = 1.40 × resting metabolic rate + exercise.


1995 ◽  
Vol 73 (2) ◽  
pp. 323-334 ◽  
Author(s):  
K. Klipstein-Grobusch ◽  
J. J. Reilly ◽  
J. Potter ◽  
C. A. Edwards ◽  
M. A. Roberts

Studies on hospitalized elderly subjects have demonstrated that negative energy balance is common during hospitalization, but have concentrated primarily on long-stay and psychogeriatric patients. There is little information on energy balance in elderly patients admitted with acute illness from the community, despite the importance of this patient group and the presence of a number of factors likely to predispose such patients to negative energy balance. In the present study energy balance was quantified in twenty patients (eight males, mean age 82 (SD 05) years; twelve females, mean age 84 (SD 6) years) admitted from the community with acute illness, and predicted basal metabolic rate (BMR) was compared with measured resting metabolic rate (RMR). Most patients were in negative energy balance during hospitalization, and median measured energy intake (El):measured RMR ratio was 1·0 (range 0·7–1·8). The mean difference between measured El and estimated total energy expenditure was −1·3 MJ/d (range -3·4 to +2·5 MJ/d). Estimated total energy expenditure exceeded measured El in fifteen of the patients and there was a significant decline in mid-arm muscle circumference (paired t, P < 0·05) during hospitalization. We conclude that moderate negative energy balance is common in this patient group, and that these patients are at risk of undernutrition during their hospital stay.


Sign in / Sign up

Export Citation Format

Share Document