scholarly journals ENERGY BALANCE AND VITAL SIGNS IN PEDIATRIC PATIENTS

2020 ◽  
Vol 8 (4_suppl3) ◽  
pp. 2325967120S0020
Author(s):  
Julie A. Young ◽  
Jessica Napolitano ◽  
Mitchell J. Rauh ◽  
Jeanne Nichols ◽  
Anastasia N. Fischer

BACKGROUND: Prior studies have shown that vital signs such as heart rate, blood pressure and body temperature are depressed in patients with an eating disorder who have experienced a negative energy balance for a significant amount of time. More recently, a negative energy balance has been the focus of Relative Energy Deficiency in Sport (RED-S), which links energy availability to the health of multiple body systems in adults in as little as 5 days with a negative energy balance. High rates of disordered eating patterns have been reported in high school athletes. As adolescents grow, the consequences of a negative energy balance can be significant and potentially irreversible. Thus, vital signs may help clinicians quickly evaluate a patient’s energy status or highlight them for further evaluation. PURPOSE: The purpose of this study was to examine energy balance and vital signs in a cohort of adolescents who were seen by a sports dietitian to gain weight or optimize sports performance. METHODS: We evaluated 240 subjects, 83% female, average age 15.0±2.3 years. Heart rate and blood pressure were measured with a dynamometer in a seated position. Body temperature was measured orally. Height and weight were recorded. BMI was then calculated and evaluated by percentile. Energy intake was assessed using a 3-day food recall log. Energy expenditure was calculated using Harris Benedict Equation and combined with estimated exercise energy expenditure. Energy balance was estimated as energy intake minus energy expenditure. RESULTS: Average age was 15.03±2.71. 85% were female. 30% were below the 15th percentile for BMI. There were no differences in BMI percentiles between males and females (p=0.99). The average heart rate was 71.62±13.4 bpm and 19% were below the 10th percentile for heart rate. Average systolic blood pressure was 110±11 mm Hg and average diastolic blood pressure was 62±7 mmHg. Average temperature was 98.1±.4 degrees F. 88%were in a negative energy balance with an average energy deficit of 552±511 calories. There were no statistically significant differences in energy balance between males and females (p=0.08). CONCLUSIONS: A disproportional number of children with low BMI and heart rate percentiles was observed, which may indicate a long-standing energy deficiency. We also found a high proportion of adolescents who experienced a standalone negative energy balance itself or vital signs consistent with a negative energy balance. Additional studies are needed to study the relationships between energy deficit magnitude and duration in adolescents and children.

2021 ◽  
Author(s):  
Patrick Mullie ◽  
Pieter Maes ◽  
Laurens van Veelen ◽  
Damien Van Tiggelen ◽  
Peter Clarys

ABSTRACT Introduction Adequate energy supply is a prerequisite for optimal performances and recovery. The aims of the present study were to estimate energy balance and energy availability during a selection course for Belgian paratroopers. Methods Energy expenditure by physical activity was measured with accelerometer (ActiGraph GT3X+, ActiGraph LLC, Pensacola, FL, USA) and rest metabolic rate in Cal.d−1 with Tinsley et al.’s equation based on fat-free mass = 25.9 × fat-free mass in kg + 284. Participants had only access to the French individual combat rations of 3,600 Cal.d−1, and body fat mass was measured with quadripolar impedance (Omron BF508, Omron, Osaka, Japan). Energy availability was calculated by the formula: ([energy intake in foods and beverages] − [energy expenditure physical activity])/kg FFM−1.d−1, with FFM = fat-free mass. Results Mean (SD) age of the 35 participants was 25.1 (4.18) years, and mean (SD) percentage fat mass was 12.0% (3.82). Mean (SD) total energy expenditure, i.e., the sum of rest metabolic rate, dietary-induced thermogenesis, and physical activity, was 5,262 Cal.d−1 (621.2), with percentile 25 at 4,791 Cal.d−1 and percentile 75 at 5,647 Cal.d−1, a difference of 856 Cal.d−1. Mean daily energy intake was 3,600 Cal.d−1, giving a negative energy balance of 1,662 (621.2) Cal.d−1. Mean energy availability was 9.3 Cal.kg FFM−1.d−1. Eleven of the 35 participants performed with a negative energy balance of 2,000 Cal.d−1, and only five participants out of 35 participants performed at a less than 1,000 Cal.d−1 negative energy balance level. Conclusions Energy intake is not optimal as indicated by the negative energy balance and the low energy availability, which means that the participants to this selection course had to perform in suboptimal conditions.


Nutrients ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1814 ◽  
Author(s):  
Yu Chooi ◽  
Cherlyn Ding ◽  
Zhiling Chan ◽  
Jezebel Lo ◽  
John Choo ◽  
...  

Weight loss, induced by chronic energy deficit, improves the blood lipid profile. However, the effects of an acute negative energy balance and the comparative efficacy of diet and exercise are not well-established. We determined the effects of progressive, acute energy deficits (20% or 40% of daily energy requirements) induced by a single day of calorie restriction (n = 19) or aerobic exercise (n = 13) in healthy subjects (age: 26 ± 9 years; body mass index (BMI): 21.8 ± 2.9 kg/m2). Fasting plasma concentrations of very low-, intermediate-, low-, and high-density lipoprotein (VLDL, LDL, IDL, and HDL, respectively) particles and their subclasses were determined using nuclear magnetic resonance. Total plasma triglyceride and VLDL-triglyceride concentrations decreased after calorie restriction and exercise (all p ≤ 0.025); the pattern of change was linear with an increasing energy deficit (all p < 0.03), with no evidence of plateauing. The number of circulating large and medium VLDL particles decreased after diet and exercise (all p < 0.015), with no change in small VLDL particles. The concentrations of IDL, LDL, and HDL particles, their relative distributions, and the particle sizes were not altered. Our data indicate that an acute negative energy balance induced by calorie restriction and aerobic exercise reduces triglyceride concentrations in a dose-dependent manner, by decreasing circulating large and medium VLDL particles.


2019 ◽  
Vol 5 (1) ◽  
pp. e000439 ◽  
Author(s):  
Monica Klungland Torstveit ◽  
Ida Lysdahl Fahrenholtz ◽  
Mia Beck Lichtenstein ◽  
Thomas Birkedal Stenqvist ◽  
Anna Katarina Melin

ObjectivesTo explore associations betweenexercise dependence, eating disorder (ED) symptoms and biomarkers of Relative Energy Deficiency in Sports (RED-S) among male endurance athletes.MethodsFifty-three healthy well-trained male cyclists, triathletes and long-distance runners recruited from regional competitive sports clubs were included in this cross-sectional study. The protocol comprised the Exercise Dependence Scale (EXDS), the ED Examination Questionnaire (EDE-Q), measurements of body composition, resting metabolic rate, energy intake and expenditure and blood analysis of hormones and glucose.ResultsParticipants with higher EXDS score displayed a more negative energy balance compared with subjects with lower EXDS score (p<0.01). EXDS total score was positively correlated with EDE-Q global score (r=0.41, p<0.05) and the subscale score forrestraint eating(r=0.34, p<0.05) andweight concern(r=0.35, p<0.05). EXDS total score and the subscaleslack of controlandtolerancewere positively correlated with cortisol (r=0.38, p<0.01, r=0.39, p<0.01 and r=0.29, p<0.05, respectively). The EXDS subscaleswithdrawalandtolerancewere negatively correlated with fasting blood glucose (r=−0.31 and r=−0.32, p<0.05, respectively), whileintention effectwas negatively correlated with testosterone:cortisol ratio (r=−0.29, p<0.05) and positively correlated with cortisol:insulin ratio (r=0.33, p<0.05).ConclusionIn this sample of healthy male athletes, we found associations between higher EXDS scores, ED symptoms and biomarkers of RED-S, such as a more pronounced negative energy balance and higher cortisol levels.


1998 ◽  
Vol 10 (1) ◽  
pp. 65 ◽  
Author(s):  
Stephen J. Judd

Animal reproduction is impaired when intake of energy is so restricted that activities essential to life are threatened; this is seen as a homeostatic adjustment that restricts wasteful energy expenditure. Fasting or exercising to a degree requiring considerable energy expenditure has major effects on the hypothalamus, including activation of corticotrophin-releasing factor (CRF) neurons, suppression of thyrotrophin-releasing hormone synthesis, and increased growth hormone secretion; these are associated with increased concentrations of hypothalamic neuropeptide Y mRNA and are corrected by administration of leptin, an adipose-tissue protein with a tertiary structure similar to the cytokine interleukin-2. This response to fasting results from a disordered pattern of activity in the gonadotrophin-releasing hormone (GnRH) pacemaker, characterized by reduced luteinizing hormone pulsatility, particularly during daytime. Animal studies have suggested that the response depends on an intact afferent vagal system from the stomach and the presence of oestrogen. Noradrenergic neurons forming the A2 group increase the activity of CRF neurons that, in turn, inhibit GnRH pulsatility. Reproductive impairment due to fasting is reversed by leptin, and abnormalities of leptin are described in individuals who fast or who develop exercise-induced amenorrhoea. This paper discusses these changes induced by negative energy balance and speculates on the involvement of leptin as a contributor to these abnormalities.


2019 ◽  
Vol 78 (3) ◽  
pp. 279-289 ◽  
Author(s):  
Nuno Casanova ◽  
Kristine Beaulieu ◽  
Graham Finlayson ◽  
Mark Hopkins

This review examines the metabolic adaptations that occur in response to negative energy balance and their potential putative or functional impact on appetite and food intake. Sustained negative energy balance will result in weight loss, with body composition changes similar for different dietary interventions if total energy and protein intake are equated. During periods of underfeeding, compensatory metabolic and behavioural responses occur that attenuate the prescribed energy deficit. While losses of metabolically active tissue during energy deficit result in reduced energy expenditure, an additional down-regulation in expenditure has been noted that cannot be explained by changes in body tissue (e.g. adaptive thermogenesis). Sustained negative energy balance is also associated with an increase in orexigenic drive and changes in appetite-related peptides during weight loss that may act as cues for increased hunger and food intake. It has also been suggested that losses of fat-free mass (FFM) could also act as an orexigenic signal during weight loss, but more data are needed to support these findings and the signalling pathways linking FFM and energy intake remain unclear. Taken together, these metabolic and behavioural responses to weight loss point to a highly complex and dynamic energy balance system in which perturbations to individual components can cause co-ordinated and inter-related compensatory responses elsewhere. The strength of these compensatory responses is individually subtle, and early identification of this variability may help identify individuals that respond well or poorly to an intervention.


1999 ◽  
Vol 24 ◽  
pp. 171-175 ◽  
Author(s):  
B. L. Collard ◽  
P. J. Boettcher ◽  
J. C. M. Dekkers ◽  
L. R. Schaeffer ◽  
D. Petitclerc

AbstractData were records of daily food intake and milk production, periodic measures of milk composition and all health and reproductive information from 140 multiparous Holstein cows involved in various experiments at the Agriculture Canada dairy research station in Lennoxville, Quebec. Energy concentrations of the total mixed rations were also available. Daily energy balance was calculated by multiplying the food intake by the concentration of energy in the diet and then subtracting from this quantity the expected (National Research Council) amount of energy required for maintenance (based on parity and body weight) and for milk production (based on yield and concentrations of fat, protein and lactose). Four energy balance traits were defined: (1) average daily energy balance within the first 10 to 100 days of lactation, (2) minimum daily energy balance, (3) days in negative energy balance and (4) total energy deficit during the period of negative energy balance. Health traits were the numbers of incidences of each of the following: (1) all udder problems, (2) mastitis, (3) all locomotive problems, (4) laminitis, (5) digestive problems and (6) reproductive problems. Reproductive traits were the number of days to first observed oestrous and number of inseminations. Phenotypic relationships between energy balance and health were investigated by regressing the energy balance traits on each health trait. Parity and treatment (according to the research trial that the cow was involved with) were also included in the model. Genetic parameters were estimated with restricted maximum likelihood and a model that included effects of parity, treatment and animal. Phenotypically, several significant (P<0.10) relationships between energy balance and health were observed. Cows with longer periods of negative energy balance had increased digestive problems. Cows with greater total energy deficit had more digestive problems and laminitis. Estimates of heritabilities for energy intake and milk energy were 0.42 and 0.12, respectively but estimates of heritability for all energy balance traits were zero. The low estimates for these traits may have been due to (1) low true additive genetic variance, (2) small amount of data, or (3) relatively few genetic ties among cows.


PLoS ONE ◽  
2013 ◽  
Vol 8 (7) ◽  
pp. e67786 ◽  
Author(s):  
Pilou L. H. R. Janssens ◽  
Rick Hursel ◽  
Eveline A. P. Martens ◽  
Margriet S. Westerterp-Plantenga

1999 ◽  
Vol 276 (6) ◽  
pp. R1739-R1748 ◽  
Author(s):  
T. P. Stein ◽  
M. J. Leskiw ◽  
M. D. Schluter ◽  
R. W. Hoyt ◽  
H. W. Lane ◽  
...  

The objectives of this study were as follows: 1) to measure human energy expenditure (EE) during spaceflight on a shuttle mission by using the doubly labeled water (DLW) method; 2) to determine whether the astronauts were in negative energy balance during spaceflight; 3) to use the comparison of change in body fat as measured by the intake DLW EE,18O dilution, and dual energy X-ray absorptiometry (DEXA) to validate the DLW method for spaceflight; and 4) to compare EE during spaceflight against that found with bed rest. Two experiments were conducted: a flight experiment ( n = 4) on the 16-day 1996 life and microgravity sciences shuttle mission and a 6° head-down tilt bed rest study with controlled dietary intake ( n = 8). The bed rest study was designed to simulate the flight experiment and included exercise. Two EE determinations were done before flight (bed rest), during flight (bed rest), and after flight (recovery). Energy intake and N balance were monitored for the entire period. Results were that body weight, water, fat, and energy balance were unchanged with bed rest. For the flight experiment, decreases in weight (2.6 ± 0.4 kg, P < 0.05) and N retention (−2.37 ± 0.45 g N/day, P < 0.05) were found. Dietary intake for the four astronauts was reduced in flight (3,025 ± 180 vs. 1,943 ± 179 kcal/day, P < 0.05). EE in flight was 3,320 ± 155 kcal/day, resulting in a negative energy balance of 1,355 ± 80 kcal/day (−15.7 ± 1.0 kcal ⋅ kg−1 ⋅ day−1, P < 0.05). This corresponded to a loss of 2.1 ± 0.4 kg body fat, which was within experimental error of the fat loss determined by18O dilution (−1.4 ± 0.5 kg) and DEXA (−2.4 ± 0.4 kg). All three methods showed no change in body fat with bed rest. In conclusion, 1) the DLW method for measuring EE during spaceflight is valid, 2) the astronauts were in severe negative energy balance and oxidized body fat, and 3) in-flight energy (E) requirements can be predicted from the equation: E = 1.40 × resting metabolic rate + exercise.


1995 ◽  
Vol 73 (2) ◽  
pp. 323-334 ◽  
Author(s):  
K. Klipstein-Grobusch ◽  
J. J. Reilly ◽  
J. Potter ◽  
C. A. Edwards ◽  
M. A. Roberts

Studies on hospitalized elderly subjects have demonstrated that negative energy balance is common during hospitalization, but have concentrated primarily on long-stay and psychogeriatric patients. There is little information on energy balance in elderly patients admitted with acute illness from the community, despite the importance of this patient group and the presence of a number of factors likely to predispose such patients to negative energy balance. In the present study energy balance was quantified in twenty patients (eight males, mean age 82 (SD 05) years; twelve females, mean age 84 (SD 6) years) admitted from the community with acute illness, and predicted basal metabolic rate (BMR) was compared with measured resting metabolic rate (RMR). Most patients were in negative energy balance during hospitalization, and median measured energy intake (El):measured RMR ratio was 1·0 (range 0·7–1·8). The mean difference between measured El and estimated total energy expenditure was −1·3 MJ/d (range -3·4 to +2·5 MJ/d). Estimated total energy expenditure exceeded measured El in fifteen of the patients and there was a significant decline in mid-arm muscle circumference (paired t, P < 0·05) during hospitalization. We conclude that moderate negative energy balance is common in this patient group, and that these patients are at risk of undernutrition during their hospital stay.


Sign in / Sign up

Export Citation Format

Share Document