scholarly journals Assessment of body composition in Indian adults: comparison between dual-energy X-ray absorptiometry and isotope dilution technique

2014 ◽  
Vol 112 (7) ◽  
pp. 1147-1153
Author(s):  
Bharati Kulkarni ◽  
Hannah Kuper ◽  
Amy Taylor ◽  
Jonathan C. Wells ◽  
K. V. Radhakrishna ◽  
...  

Dual-energy X-ray absorptiometry (DXA) and isotope dilution technique have been used as reference methods to validate the estimates of body composition by simple field techniques; however, very few studies have compared these two methods. We compared the estimates of body composition by DXA and isotope dilution (18O) technique in apparently healthy Indian men and women (aged 19–70 years,n152, 48 % men) with a wide range of BMI (14–40 kg/m2). Isotopic enrichment was assessed by isotope ratio mass spectroscopy. The agreement between the estimates of body composition measured by the two techniques was assessed by the Bland–Altman method. The mean age and BMI were 37 (sd15) years and 23·3 (sd5·1) kg/m2, respectively, for men and 37 (sd14) years and 24·1 (sd5·8) kg/m2, respectively, for women. The estimates of fat-free mass were higher by about 7 (95 % CI 6, 9) %, those of fat mass were lower by about 21 (95 % CI − 18, − 23) %, and those of body fat percentage (BF%) were lower by about 7·4 (95 % CI − 8·2, − 6·6) % as obtained by DXA compared with the isotope dilution technique. The Bland–Altman analysis showed wide limits of agreement that indicated poor agreement between the methods. The bias in the estimates of BF% was higher at the lower values of BF%. Thus, the two commonly used reference methods showed substantial differences in the estimates of body composition with wide limits of agreement. As the estimates of body composition are method-dependent, the two methods cannot be used interchangeably.

2003 ◽  
Vol 95 (5) ◽  
pp. 2039-2046 ◽  
Author(s):  
P. J. Gately ◽  
D. Radley ◽  
C. B. Cooke ◽  
S. Carroll ◽  
B. Oldroyd ◽  
...  

The objective of the present study was to investigate the accuracy of percent body fat (%fat) estimates from dual-energy X-ray absorptiometry, air-displacement plethysmography (ADP), and total body water (TBW) against a criterion four-compartment (4C) model in overweight and obese children. A volunteer sample of 30 children (18 male and 12 female), age of (mean ± SD) 14.10 ± 1.83 yr, body mass index of 31.6 ± 5.5 kg/m, and %fat (4C model) of 41.2 ± 8.2%, was assessed. Body density measurements were converted to %fat estimates by using the general equation of Siri (ADPSiri) (Siri WE. Techniques for Measuring Body Composition. 1961) and the age- and gender-specific constants of Lohman (ADPLoh) (Lohman TG. Exercise and Sport Sciences Reviews. 1986). TBW measurements were converted to %fat estimates by assuming that water accounts for 73% of fat-free mass (TBW73) and by utilizing the age- and gender-specific water contents of Lohman (TBWLoh). All estimates of %fat were highly correlated with those of the 4C model ( r ≥ 0.95, P < 0.001; SE ≤ 2.14). For %fat, the total error and mean difference ± 95% limits of agreement compared with the 4C model were 2.50, 1.8 ± 3.5 (ADPSiri); 1.82, -0.04 ± 3.6 (ADPLoh); 2.86, -2.0 ± 4.1 (TBW73); 1.90, -0.3 ± 3.8 (TBWLoh); and 2.74, 1.9 ± 4.0 DXA (dual-energy X-ray absorptiometry), respectively. In conclusion, in overweight and obese children, ADPLoh and TBWLoh were the most accurate methods of measuring %fat compared with a 4C model. However, all methods under consideration produced similar limits of agreement.


1999 ◽  
Vol 87 (3) ◽  
pp. 1114-1122 ◽  
Author(s):  
Willa C. Fornetti ◽  
James M. Pivarnik ◽  
Jeanne M. Foley ◽  
Justus J. Fiechtner

The purpose of this investigation was to determine the reliability and validity of bioelectrical impedance (BIA) and near-infrared interactance (NIR) for estimating body composition in female athletes. Dual-energy X-ray absorptiometry was used as the criterion measure for fat-free mass (FFM). Studies were performed in 132 athletes [age = 20.4 ± 1.5 (SD) yr]. Intraclass reliabilities (repeat and single trial) were 0.987–0.997 for BIA (resistance and reactance) and 0.957–0.980 for NIR (optical densities). Validity of BIA and NIR was assessed by double cross-validation. Because correlations were high ( r = 0.969–0.983) and prediction errors low, a single equation was developed by using all 132 subjects for both BIA and NIR. Also, an equation was developed for all subjects by using height and weight only. Results from dual-energy X-ray absorptiometry analysis showed FFM = 49.5 ± 6.0 kg, which corresponded to %body fat (%BF) of 20.4 ± 3.1%. BIA predicted FFM at 49.4 ± 5.9 kg ( r = 0.981, SEE = 1.1), and NIR prediction was 49.5 ± 5.8 kg ( r = 0.975, SEE = 1.2). Height and weight alone predicted FFM at 49.4 ± 5.7 kg ( r = 0.961, SEE = 1.6). When converted to %BF, prediction errors were ∼1.8% for BIA and NIR and 2.9% for height and weight. Results showed BIA and NIR to be extremely reliable and valid techniques for estimating body composition in college-age female athletes.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Kulapong Jayanama ◽  
Supanee Putadechakun ◽  
Praopilad Srisuwarn ◽  
Sakda Arj-Ong Vallibhakara ◽  
Prapimporn Chattranukulchai Shantavasinkul ◽  
...  

Background. Body composition measurement is very important for early nutritional care in hemodialysis patients. Dual-energy X-ray absorptiometry (DXA) is a gold standard test, but clinically limited. Bioelectrical impedance analysis (BIA) with multifrequency technique is a practical and reliable tool. Objective. This cross-sectional study was aimed to compare the agreement of BIA with DXA in measurement of body composition in hemodialysis patients and to evaluate their associated factors. Methods. Body composition was measured by 2 BIA methods (InBody S10 and InBody 720) and DXA after a hemodialysis session. A total of 69 measurements were included. Pearson’s correlation and Bland and Altman analysis were used to determine the correlation of body composition between methods and to compare the methods agreement, respectively. Results. The correlation coefficients of body compositions were strong between DXA and InBody S10 (fat mass index (FMI): r=0.95, fat-free mass index (FFMI): r=0.78) and also between DXA and InBody 720 (FMI: r=0.96, FFMI: r=0.81). Comparing to DXA, the means of each body composition measured by InBody S10 method were not significantly different in each gender, but differences were found in FM, %FM, and FMI measured by InBody 720. Conclusions. In maintenance hemodialysis patients, the measurement of body composition with DXA and both BIA methods had highly significant correlations; practically, BIA method could be used as an instrument to follow FM and FFM and to measure the edematous stage. Further studies with large populations are warranted.


1992 ◽  
Vol 82 (6) ◽  
pp. 687-693 ◽  
Author(s):  
N. J. Fuller ◽  
S. A. Jebb ◽  
M. A. Laskey ◽  
W. A. Coward ◽  
M. Elia

1. Body composition was assessed in 28 healthy subjects (body mass index 20–28 kg/m2) by dual-energy X-ray absorptiometry, deuterium dilution, densitometry, 40K counting and four prediction methods (skinfold thickness, bioelectrical impedance, near-i.r. interactance and body mass index). Three- and four-component models of body composition were constructed from combinations of the reference methods. The results of all methods were compared. Precision was evaluated by analysis of propagation of errors. The density and hydration fraction of the fat-free mass were determined. 2. From the precision of the basic measurements, the propagation of errors for the estimation of fat (± sd) by the four-component model was found to be ± 0.54 kg, by the three-component model, ± 0.49 kg, by deuterium dilution, ± 0.62 kg, and by densitometry, ± 0.78 kg. Precision for the measurement of the density and hydration fraction of fat-free mass was ± 0.0020 kg/l and ± 0.0066, respectively. 3. The agreement between reference methods was generally better than between reference and alternative methods. Dual-energy X-ray absoptiometry predicted three- and four-component model body composition slightly less well than densitometry or deuterium dilution (both of which greatly influence these multi-component models). 4. The hydration fraction of fat-free mass was calculated to be 0.7382 ± 0.0213 (range 0.6941–0.7837) and the density of fat-free mass was 1.1015 ± 0.0073 kg/1 (range 1.0795–1.1110 kg/1), with no significant difference between men and women for either. 5. The results suggest that the three- and four-component models are not compromised by errors arising from individual techniques. Dual-energy X-ray absorptiometry would appear to be a suitable alternative method for the assessment of body composition in these healthy adults. The traditional mean value assumed for density of the fat-free mass in classic densitometry (1.1 kg/l) appears to be appropriate, and the mean hydration fraction was close to values which are generally applied to the fat-free mass (0.72–0.73). Despite concealing considerable inter-individual variation, these mean values may be applied to groups with characteristics similar to those in this study. Finally, with the notable exception of skinfold thickness, bedside prediction methods show poor agreement with both the three- and the four-component models.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Masae Miyatani ◽  
Pearl Yang ◽  
Scott Thomas ◽  
B. Catharine Craven ◽  
Paul Oh

We aimed to compare the level of agreement between leg-to-leg bioelectrical impedance analysis (LBIA) and dual-energy X-ray absorptiometry (DXA) for assessing changes in body composition following exercise intervention among individuals with Type 2 diabetes mellitus (T2DM). Forty-four adults with T2DM, age53.2±9.1years; BMI30.8±5.9 kg/m2participated in a 6-month exercise program with pre and post intervention assessments of body composition. Fat free mass (FFM), % body fat (%FM) and fat mass (FM) were measured by LBIA (TBF-300A) and DXA. LBIA assessments of changes in %FM and FM post intervention showed good relative agreements with DXA variables (P<0.001). However, Bland-Altman plot(s) indicated that there were systematic errors in the assessment of the changes in body composition using LBIA compared to DXA such that, the greater the changes in participant body composition, the greater the disparity in body composition data obtained via LBIA versus DXA data (FFM,P=0.013; %FM,P<0.001; FM,P<0.001). In conclusion, assessment of pre and post intervention body composition implies that LBIA is a good tool for assessment qualitative change in body composition (gain or loss) among people with T2DM but is not sufficiently sensitive to track quantitative changes in an individual’s body composition.


2012 ◽  
Vol 109 (7) ◽  
pp. 1219-1229 ◽  
Author(s):  
Anthony M. Villani ◽  
Michelle Miller ◽  
Ian D. Cameron ◽  
Susan Kurrle ◽  
Craig Whitehead ◽  
...  

Ageing is associated with weight loss and subsequently poor health outcomes. The present study assessed agreement between two field methods, bioelectrical impedance spectroscopy (BIS) and corrected arm muscle area (CAMA) for assessment of body composition against dual-energy X-ray absorptiometry (DXA), the reference technique. Agreement between two predictive equations estimating skeletal muscle mass (SMM) from BIS against SMM from DXA was also determined. Assessments occurred at baseline < 14 d post-surgery (n 79), and at 6 months (6M; n 75) and 12 months (12M; n 63) in community-living older adults after surgical treatment for hip fracture. The 95 % limits of agreement (LOA) between BIS and DXA, CAMA and DXA and the equations and DXA were assessed using Bland–Altman analyses. Mean bias and LOA for fat-free mass (FFM) between BIS and DXA were: baseline, 0·7 ( − 10·9, 12·4) kg; 6M, − 0·5 ( − 20·7, 19·8) kg; 12M, 0·1 ( − 8·7, 8·9) kg and for SMM between CAMA and DXA were: baseline, 0·3 ( − 11·7, 12·3) kg; 6M, 1·3 ( − 4·5, 7·1) kg; 12M, 0·9 ( − 5·4, 7·2) kg. Equivalent data for predictive equations against DXA were: equation 1: baseline, 15·1 ( − 9·5, 20·6) kg; 6M, 17·1 ( − 12·0, 22·2) kg; 12M, 17·5 ( − 13·0, 22·0) kg; equation 2: baseline, 12·6 ( − 7·3, 19·9) kg; 6M, 14·4 ( − 9·7, 19·1) kg; 12M, 14·8 ( − 10·7, 18·9) kg. Proportional bias (BIS: β = − 0·337, P< 0·001; CAMA: β = − 0·294, P< 0·001) was present at baseline but not at 6M or 12M. Clinicians should be cautious in using these field methods to predict FFM and SMM, particularly in the acute care setting. New predictive equations would be beneficial.


2019 ◽  
Vol 4 (2) ◽  
pp. 23 ◽  
Author(s):  
Antonio ◽  
Kenyon ◽  
Ellerbroek ◽  
Carson ◽  
Burgess ◽  
...  

The purpose of this investigation was to compare two different methods of assessing body composition (i.e., a multi-frequency bioelectrical impedance analysis (MF-BIA) and dual-energy x-ray absorptiometry (DXA)) over a four-week treatment period in exercise-trained men and women. Subjects were instructed to reduce their energy intake while maintaining the same exercise regimen for a period of four weeks. Pre and post assessments for body composition (i.e., fat-free mass, fat mass, percent body fat) were determined via the MF-BIA and DXA. On average, subjects reduced their energy intake by ~18 percent. The MF-BIA underestimated fat mass and percentage body fat and overestimated fat-free mass in comparison to the DXA. However, when assessing the change in fat mass, fat-free mass or percent body fat, there were no statistically significant differences between the MF-BIA vs. DXA. Overall, the change in percent body fat using the DXA vs. the MF-BIA was −1.3 ± 0.9 and −1.4 ± 1.8, respectively. Our data suggest that when tracking body composition over a period of four weeks, the MF-BIA may be a viable alternative to the DXA in exercise-trained men and women.


Children ◽  
2020 ◽  
Vol 7 (10) ◽  
pp. 192
Author(s):  
Teresa A. Marshall ◽  
Alexandra M. Curtis ◽  
Joseph E. Cavanaugh ◽  
John J. Warren ◽  
Steven M. Levy

Our objective was to identify sex-specific age 5- to 17-year body composition (body mass index (BMI), % body fat, fat mass index, fat-free mass index) trajectories, compare trajectories assigned using age 5 (AGE5) data to those assigned using all available (ALL) data, and compare BMI assignments to other body composition assignments. Cluster analysis was used to identify low, medium, and high trajectories from body composition measures obtained from dual energy x-ray absorptiometry (DXA) scans at 5, 9, 11, 13, 15, and 17 years in a birth cohort followed longitudinally (n = 469). Moderate agreement was observed for comparisons between AGE5 data and ALL data cluster assignments for each body composition measure. Agreement between cluster assignments for BMI and other body composition measures was stronger using ALL data than using AGE5 data. Our results suggest that BMI, % body fat, fat mass index, and fat free mass index trajectories are established during early childhood, and that BMI is a reasonable predictor of body composition appropriate to track obesity in public health and clinical settings.


2019 ◽  
Vol 67 (2) ◽  
pp. 73
Author(s):  
P. A. LeeHong ◽  
X. Li ◽  
W. L. Bryden ◽  
L. C. Ward

Dual-energy X-ray absorptiometry (DXA) is a non-invasive technology for measurement of body composition that requires validation against reference methods when applied to a new species. The aim of this work was to validate DXA for the assessment of body composition of the echidna. Body composition was determined in the short-beaked echidna (Tachyglossus aculeatus aculeatus) using a Norland XR36 DXA scanner and validated by proximate chemical analysis for dry matter, ash, crude fat (FM) and protein (as 6.25 × N) and bone mineral content (BMC). Echidnas were opportunistically obtained as ‘road kill’. Body composition data were compared between techniques by correlation and limits of agreement (LOA) analyses. Twenty-eight echidnas (11 males, 13 females, 4 not determined), weighing 520–5517 g, underwent analyses. Mean FM was 489.9 ± 439.5 g and 448.5 ± 337.5 g, lean mass was 2276.0 ± 1021.4 g and 2256.0 ± 1026.0 g, fat-free mass was 2356.3 ± 1055.1 g and 2389.5 ± 1081.1 g and BMC was 80.3 ± 39.5 g and 79.9 ± 42.4 g by DXA and chemical analysis, respectively. The two methods were highly correlated (0.84 to 0.99) and not significantly different, although LOA were large. DXA has the potential to be used to assess body composition of echidnas although further work is required to improve accuracy of measurement.


Sign in / Sign up

Export Citation Format

Share Document