Evaluation and host specificity of two seed flies Mesoclanis polana and M. magnipalpis (Diptera: Tephritidae): biological control agents for Chrysanthemoides monilifera (Asteraceae) in Australia

2000 ◽  
Vol 90 (6) ◽  
pp. 467-474 ◽  
Author(s):  
R.J. Adair ◽  
A. Bruzzese

AbstractLarvae of the South African tephritid flies Mesoclanis polana Munro and M. magnipalpis Bezzi feed in the developing seeds of Chrysanthemoides monilifera. Host specificity evaluation using 109 plant species from 25 families indicated that complete development was restricted to their natural host C. monilifera. Minor feeding and limited development was detected on 18 species, but was of no ecological or economic significance. Mesoclanis polana and M. magnipalpis have been released in Australia and M. polana has established and dispersed widely. Mesoclanis magnipalpis has not yet become naturalized. Parasitism of M. polana in Australia by several species of Hymenoptera has been detected, but is not expected to limit the establishment and impact of these flies.

1997 ◽  
Vol 87 (4) ◽  
pp. 331-341 ◽  
Author(s):  
R. J. Adair ◽  
J. K. Scott

AbstractThe southern African shrubs Chrysanthemoides monilifera monilifera and C. m. rotundata (Compositae) are serious weeds of native vegetation in Australia and are targets for classical biological control. In host specificity tests using 69 species from 25 families, two leaf-feeding chrysomelid beetles, Chrysolina picturata (Clark) and Chrysolina sp. B, were able to complete development on only Chrysanthemoides monilifera and C. incana. The subspecies Chrysanthemoides m. monilifera was the superior host for both Chrysolina picturata and Chrysolina sp. B. Feeding and limited development of both species occurred on Calendula officinalis; limited development by Chrysolina picturata larvae occurred on Helianthus annuus, Tussilago farfara and Cymbonotus priessianus. Chrysolina picturata and Chrysolina sp. B are considered to be Chrysanthemoides-specific and have been approved for release in Australia. Potential release sites for both Chrysolina species were chosen by comparing the climate of the insects' African distribution with climate stations within the range of Chrysanthemoides monilifera in Australia. Chrysolina picturata and Chrysolina sp. B are suited for release within the western distribution of Chrysanthemoides m. monilifera in coastal areas of south eastern South Australia.


Author(s):  
Mahfouz M. M. Abd-Elgawad

Abstract Background Potato represents Egypt’s largest vegetable export crop. Many plant-parasitic nematodes (PPNs) are globally inflicting damage to potato plants. In Egypt, their economic significance considerably varies according to PPN distribution, population levels, and pathogenicity. Main body This review article highlights the biology, ecology, and economic value of the PPN control viewpoint. The integration of biological control agents (BCAs), as sound and safe potato production practice, with other phytosanitary measures to manage PPNs is presented for sustainable agriculture. A few cases of BCA integration with such other options as synergistic/additive PPN management measures to upgrade crop yields are reviewed. Yet, various attributes of BCAs should better be grasped so that they can fit in at the emerging and/or existing integrated management strategies of potato pests. Conclusion A few inexpensive biocontrol products, for PPNs control on potato, versus their corresponding costly chemical nematicides are gathered and listed for consideration. Hence, raising awareness of farmers for making these biologicals familiar and easy to use will promote their wider application while offering safe and increased potato yield.


1983 ◽  
Vol 73 (4) ◽  
pp. 625-632 ◽  
Author(s):  
D. P. A. Sands ◽  
R. C. Kassulke

AbstractThe biology and host specificity of a South American moth, Acigona infusella (Wlk.), were studied in quarantine facilities in Australia. In choice tests on the host specificity of A. infusella, slight feeding by larvae occured on ginger, lettuce, banana, bullrush (Typha orientalis) and water primrose (Ludwigia peploides), but in starvation tests only waterhyacinth (Eichhornia crassipes) and pickerel weed (Pontederia cordata) supported complete development. A decrease in larval mortality and increase in egg-mass size of A. infusella occured when a microsporidian, Vairimorpha sp.; infecting the colony was eliminated, suggesting that these insects may then perform more effectively as biological control agents in Australia than in South America. The damage to waterhyacinth cause bu larvae of A. infusella may complement attack by other biological control agents already established in Australia.


Bothalia ◽  
2011 ◽  
Vol 41 (2) ◽  
pp. 235-238 ◽  
Author(s):  
L. Mucina ◽  
D. A. Snijman

We describe and discuss the distribution of a new, naturalized alien species, Maireana brevifolia (R.Br.) Paul G.Wilson (Chenopodiaceae), a native of Australia, in the western regions of South Africa. First discovered near Worcester, Western Cape in 1976, the species is now established in disturbed karoo shrubby rangelands, along dirt roads and on saline alluvia, from northern Namaqualand to the western Little Karoo. In the South African flora, M. brevifolia is most easily confused with the indigenous Bassia salsoloides (Fenzl) A.J.Scott, from which it is distinguished by the flat to cup-shaped and almost glabrous perianth with woolly-ciliate lobes, and the hardened and winged fruiting perianth.


Sign in / Sign up

Export Citation Format

Share Document