Observations on changes in the female reproductive system of the wheat bulb fly Leptohylemyia coarctata (Fall.)

1971 ◽  
Vol 61 (1) ◽  
pp. 55-68 ◽  
Author(s):  
Margaret G. Jones

In Leptohylemyia coarctata (Fall.) the germarium cuts off oocytes which develop through the stages 00 and 0 and I-V, recognised in other Cyclorraphous flies, in 4–5 weeks. All eggs of one batch of the gonadotrophic cycle ripen at the same time. After oviposition, the split intima, the remains of the follicular epithelium, and the nurse cells slowly contract to form the follicular relic. Flies swept from winter wheat during June and July and caught in water traps in July and August showed all stages of egg development. In 1970, 24·7% of the females swept from the crop had completed the first, 4–7% the second and 0–4% the third gonadotrophic cycle. All the eggs were not laid at the same time. During later gonadotrophic cycles, some ovarioles were non-functional. Flies laid one or two batches of eggs, rarely three. In 1970, many flies were attacked and killed by E. muscae. Only one out of 115 newly emerged female wheat bulb flies presented with foods usually found in the crop or citrated blood contained mature eggs after 24–27 days in small cages. Those fed only on 0·1 M glucose survived but did not deposit yolk in the ovum; those provided only with yeast paste died. Honey dew from cereal aphids was the main source of sugar. Water in droplet form and space to move seem necessary for the maturation of the eggs.

2008 ◽  
Vol 43 (4) ◽  
pp. 362-372 ◽  
Author(s):  
Xiaohong Fu ◽  
Yingping Xie ◽  
Xiaomin Zhang ◽  
Weimin Liu

The structure of the female reproductive system of the mealybug, Phenacoccus fraxinus Tang (Hemiptera: Coccoidea: Pseudococcidae), was studied using standard histological examination of serial sections of tissues embedded in paraffin and by scanning electron microscopy. Our studies revealed that the ovary of P. fraxinus has paired lateral oviducts comprised of numerous short ovarioles. Each ovariole consists of 1 trophic chamber, 1 egg chamber and 1 pedicel which connect to the bottom of the egg chamber. Three nurse cells were observed in the trophic chamber, whereas yolk, lipid droplets and an oocyte were seen in the egg chamber. Follicular cells were arranged along the wall of the egg chamber and extended to form the pedicel. Many tracheae and tracheoles of various thicknesses were observed innervating the clusters of ovaries.


2019 ◽  
Vol 19 (2) ◽  
Author(s):  
Michael J Grodowitz ◽  
Darcy A Reed ◽  
Brad Elliott ◽  
Thomas M Perring

Abstract In this paper, we describe the morphology of the female Bagrada hilaris (Burmeister) reproductive system and develop a physiological age-grading system related to egg production. The female reproductive system is composed of two meroistic and telotrophic ovaries each containing 5–6 tubular ovarioles. The ovarioles unite into the lateral oviduct which combine to form the common oviduct. The ovarioles are composed of two regions; the distal germarium and the tubular vitellarium which contains maturing follicles. Each follicle is surrounded by a layer of cells; the follicular epithelium. As the follicle passes from the ovariole to the lateral oviducts the follicular epithelial cells slough off and accumulate in the base of the ovarioles and are known as follicular relics. The continuum of ovarian development is divided into two categories: nulliparous (‘nonreproducing’) and parous (‘reproducing’). The nulliparous category is characterized by the absence of follicular relics or eggs in the oviducts as opposed to the parous category where follicular relics and, in many cases, eggs occurred in the oviducts. The nulliparous category is divided further into two stages; N1 and N2 based on ovariole differentiation. The parous category is divided into three stages; P1, P2, and P3, based on the quantity and appearance of follicular relics. Females characterized as P3 produced three times more eggs (79.2 eggs ± 5.7) than females characterized as P1 (27.1 eggs ± 6.0).


2013 ◽  
Vol 73 (4) ◽  
pp. 895-901 ◽  
Author(s):  
TG Pinheiro ◽  
MI Marques ◽  
CS Fontanetti

Polydesmida is the largest order in the class Diplopoda in terms of the number of species, genera and families, but there are few studies of the ovarian morphology of species in this order. This study aimed to perform a comparative study of the ovarian morphology of three species from this order to increase the understanding of the morphological evolution of this system in Polydesmida. Adults females of two of these species, Poratia salvator and Myrmecodesmus hastatus, belonging to the family Pyrgodesmidae, had a unpaired ovary that formed a tubular organ containing oocytes, with P. salvator present grouping of oocytes into a structure similar to ovisacs. This condition appeared to be apomorphic and was associated with the small size of these species (< 10 mm) and their short life cycle. The third species, Telonychopus klossae (Chelodesmidae), had a large body and an ovary with paired ovisacs, which was symplesiomorphic with other Polydesmida families.


1972 ◽  
Vol 70 (2) ◽  
pp. 396-408 ◽  
Author(s):  
K.-D. Schulz ◽  
H. Haarmann ◽  
A. Harland

ABSTRACT The present investigation deals with the oestrogen-sensitivity of the female reproductive system during the neonatal period. Newborn female guinea pigs were used as test animals. At different times after a single subcutaneous injection of a physiological dose of 0.1 μg or an unphysiologically high dose of 10 μg 17β-oestradiol/100 g body weight, the RNA- and protein-synthesis was examined in the hypothalamic region, pituitary, cerebral cortex, liver, adrenal gland, ovary and uterus. With a physiological dose an increase in organ weight, protein content, RNA-and protein-synthesis was found only in the uterus. These alterations turned out to be dose-dependent. In addition to the findings in the uterus an inhibition of the aminoacid incorporation rate occurred in the liver following the injection of the high oestradiol dose. As early as 1 hour after the administration of 0.1 μg 17β-oestradiol an almost 100% increase in uterine protein synthesis was detectable. This result demonstrates a high oestrogen-sensitivity of this organ during the neonatal period. All the other organs of the female reproductive system such as the hypothalamus, pituitary and ovary did not show any oestrogen response. Therefore the functional immaturity of the uterus during post partem life is not the result of a deficient hormone sensitivity but is correlated with the absence of a sufficient hormonal stimulus at this time. The investigation on the effects of actinomycin resulted in different reactions in the uterus and liver. In contrast to the liver a paradoxical actinomycin effect was found in the uterus after treatment with actinomycin alone. This effect is characterized by a small inhibition of RNA-synthesis and a 50% increase in protein synthesis. The treatment of the newborn test animals with actinomycin and 17β-oestradiol together abolished the oestrogen-induced stimulation of the uterine RNA-and protein-synthesis. Consequently, the effect of oestrogens during the neonatal period is also connected with the formation of new proteins via an increased DNA-directed RNA-synthesis.


2017 ◽  
Vol 27 (3) ◽  
pp. 250-265 ◽  
Author(s):  
Volodymyr Yu. Prokopyuk ◽  
◽  
Olga V. Grischenko ◽  
Oleksandra V. Prokopyuk ◽  
Nadiia O. Shevchenko ◽  
...  

2020 ◽  
Vol 6 (1) ◽  
pp. 23-31
Author(s):  
M. Alisherova ◽  
◽  
M. Ismailova

Currently, there are no standard approaches to monitoring patients with ovarian cancer (OC). While the role of ultrasound (US) has been identified in the primary diagnosis of OS, it is still controversial during the subsequent surgical treatment of OC. In world statistics, ovarian cancer is consistently among the four main localizations of malignant tumors of the female reproductive system, along with tumors of the breast, body and cervix.


2009 ◽  
Vol 22 (2) ◽  
pp. 109-124 ◽  
Author(s):  
Zaher A. Radi ◽  
Rosemary A. Marusak ◽  
Dale L. Morris

2021 ◽  
Vol 22 (2) ◽  
pp. 477
Author(s):  
Guendalina Froechlich ◽  
Chiara Gentile ◽  
Luigia Infante ◽  
Carmen Caiazza ◽  
Pasqualina Pagano ◽  
...  

Background: HER2-based retargeted viruses are in advanced phases of preclinical development of breast cancer models. Mesothelin (MSLN) is a cell-surface tumor antigen expressed in different subtypes of breast and non-breast cancer. Its recent identification as a marker of some triple-negative breast tumors renders it an attractive target, presently investigated in clinical trials employing antibody drug conjugates and CAR-T cells. The availability of MSLN-retargeted oncolytic viruses may complement the current immunotherapeutic panel of biological drugs against HER2-negative breast and non-breast tumors. Methods: A fully virulent, tumor-targeted oncolytic Herpes simplex virus-1 (MSLN-THV) with a selectivity for mesothelin-expressing cancer cells was generated. Recombineering technology was used to replace an essential moiety of the viral glycoprotein D with antibody fragments derived from clinically validated MSLN monoclonal antibodies, and to allow IL12 cargo expression in infected cells. Panels of breast and female reproductive system cell lines were used to verify the oncolytic potential of the viral constructs. A platform for production of the retargeted viruses was developed in HEK 293 cells, providing stable expression of a suitable chimeric receptor. Results: We demonstrated the selectivity of viral infection and cytotoxicity by MSLN-retargeted viruses in a panel of mesothelin-positive cancer cells, originating from breast and female reproductive system tumors. We also developed a second-generation oncolytic MSLN-THV, encoding IL12, to enhance the immunotherapeutic potential of the viral backbone. A non-tumor cell line expressing a chimeric MSLN/Nectin-1 receptor, de-sensitized from antiviral responses by genetic inactivation of the Stimulator of Interferon Genes (STING)-dependent pathway was engineered, to optimize viral yields. Conclusions: Our proof-of-concept study proposes MSLN-retargeted herpesviruses as potential cancer immunotherapeutics for assessments in preclinical models of MSLN-positive tumors, complementing the available panel of oncolytic viruses to HER2-negative breast tumors.


Sign in / Sign up

Export Citation Format

Share Document