On fractional heat equations with non-local initial conditions

2015 ◽  
Vol 59 (1) ◽  
pp. 65-76 ◽  
Author(s):  
Bruno de Andrade ◽  
Claudio Cuevas ◽  
Herme Soto

AbstractIn this paper we consider the problem of existence of mild solutions to semilinear fractional heat equations with non-local initial conditions. We provide sufficient conditions for existence and regularity of such solutions.

Symmetry ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 2075
Author(s):  
Ratinan Boonklurb ◽  
Tawikan Treeyaprasert ◽  
Aong-art Wanna

This article deals with finite-time quenching for the system of coupled semi-linear heat equations ut=uxx+f(v) and vt=vxx+g(u), for (x,t)∈(0,1)×(0,T), where f and g are given functions. The system has the homogeneous Neumann boundary conditions and the bounded nonnegative initial conditions that are compatible with the boundary conditions. The existence result is established by using the method of upper and lower solutions. We obtain sufficient conditions for finite time quenching of solutions. The quenching set is also provided. From the quenching set, it implies that the quenching solution has asymmetric profile. We prove the blow-up of time-derivatives when quenching occurs. We also find the criteria to identify simultaneous and non-simultaneous quenching of solutions. For non-simultaneous quenching, the corresponding quenching rate of solutions is given.


Author(s):  
M. V. Dontsova

The Cauchy problem for a system of first-order quasilinear equations with special right-hand sides is considered. The study of solvability of this system in the original coordinates is based on the method of additional argument. It is proved that the local solution of such system exists and that its smoothness is not lower than the smoothness of the initial conditions. For system of two equations non-local solutions are considered that are continued by finite number of steps from the local solution. Sufficient conditions for the existence of such non-local solution are derived. The proof of the non-local resolvability of the system relies on original global estimates.


2019 ◽  
Vol 24 (2) ◽  
pp. 189-209
Author(s):  
Yatian Pei ◽  
Yong-Kui Chang

In this paper, we mainly consider a control system governed by a Hilfer fractional evolution hemivariational inequality with a nonlocal initial condition. We first establish sufficient conditions for the existence of mild solutions to the addressed control system via properties of generalized Clarke subdifferential and a fixed point theorem for condensing multivalued maps. Then we present the existence of optimal state-control pairs of the limited Lagrange optimal systems governed by a Hilfer fractional evolution hemivariational inequality with a nonlocal initial condition. The optimal control results are derived without uniqueness of solutions for the control system.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Irena Lasiecka ◽  
Buddhika Priyasad ◽  
Roberto Triggiani

Abstract We consider the 𝑑-dimensional Boussinesq system defined on a sufficiently smooth bounded domain and subject to a pair { v , u } \{v,\boldsymbol{u}\} of controls localized on { Γ ~ , ω } \{\widetilde{\Gamma},\omega\} . Here, 𝑣 is a scalar Dirichlet boundary control for the thermal equation, acting on an arbitrarily small connected portion Γ ~ \widetilde{\Gamma} of the boundary Γ = ∂ ⁡ Ω \Gamma=\partial\Omega . Instead, 𝒖 is a 𝑑-dimensional internal control for the fluid equation acting on an arbitrarily small collar 𝜔 supported by Γ ~ \widetilde{\Gamma} . The initial conditions for both fluid and heat equations are taken of low regularity. We then seek to uniformly stabilize such Boussinesq system in the vicinity of an unstable equilibrium pair, in the critical setting of correspondingly low regularity spaces, by means of an explicitly constructed, finite-dimensional feedback control pair { v , u } \{v,\boldsymbol{u}\} localized on { Γ ~ , ω } \{\widetilde{\Gamma},\omega\} . In addition, they will be minimal in number and of reduced dimension; more precisely, 𝒖 will be of dimension ( d - 1 ) (d-1) , to include necessarily its 𝑑-th component, and 𝑣 will be of dimension 1. The resulting space of well-posedness and stabilization is a suitable, tight Besov space for the fluid velocity component (close to L 3 ⁢ ( Ω ) \boldsymbol{L}^{3}(\Omega) for d = 3 d=3 ) and a corresponding Besov space for the thermal component, q > d q>d . Unique continuation inverse theorems for suitably over-determined adjoint static problems play a critical role in the constructive solution. Their proof rests on Carleman-type estimates, a topic pioneered by M. V. Klibanov since the early 80s.


Author(s):  
Xia Zhou ◽  
Dongpeng Zhou ◽  
Shouming Zhong

Abstract This paper consider the existence, uniqueness and exponential stability in the pth moment of mild solution for impulsive neutral stochastic integro-differential equations driven simultaneously by fractional Brownian motion and by standard Brownian motion. Based on semigroup theory, the sufficient conditions to ensure the existence and uniqueness of mild solutions are obtained in terms of fractional power of operators and Banach fixed point theorem. Moreover, the pth moment exponential stability conditions of the equation are obtained by means of an impulsive integral inequality. Finally, an example is presented to illustrate the effectiveness of the obtained results.


Symmetry ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 473
Author(s):  
Jehad Alzabut ◽  
A. George Maria Selvam ◽  
Rami Ahmad El-Nabulsi ◽  
D. Vignesh ◽  
Mohammad Esmael Samei

Pantograph, the technological successor of trolley poles, is an overhead current collector of electric bus, electric trains, and trams. In this work, we consider the discrete fractional pantograph equation of the form Δ*β[k](t)=wt+β,k(t+β),k(λ(t+β)), with condition k(0)=p[k] for t∈N1−β, 0<β≤1, λ∈(0,1) and investigate the properties of asymptotic stability of solutions. We will prove the main results by the aid of Krasnoselskii’s and generalized Banach fixed point theorems. Examples involving algorithms and illustrated graphs are presented to demonstrate the validity of our theoretical findings.


2020 ◽  
Vol 10 (1) ◽  
pp. 353-370 ◽  
Author(s):  
Hans-Christoph Grunau ◽  
Nobuhito Miyake ◽  
Shinya Okabe

Abstract This paper is concerned with the positivity of solutions to the Cauchy problem for linear and nonlinear parabolic equations with the biharmonic operator as fourth order elliptic principal part. Generally, Cauchy problems for parabolic equations of fourth order have no positivity preserving property due to the change of sign of the fundamental solution. One has eventual local positivity for positive initial data, but on short time scales, one will in general have also regions of negativity. The first goal of this paper is to find sufficient conditions on initial data which ensure the existence of solutions to the Cauchy problem for the linear biharmonic heat equation which are positive for all times and in the whole space. The second goal is to apply these results to show existence of globally positive solutions to the Cauchy problem for a semilinear biharmonic parabolic equation.


2018 ◽  
Vol 15 (11) ◽  
pp. 1850188 ◽  
Author(s):  
E. Elizalde ◽  
S. D. Odintsov ◽  
E. O. Pozdeeva ◽  
S. Yu. Vernov

The cosmological dynamics of a non-locally corrected gravity theory, involving a power of the inverse d’Alembertian, is investigated. Casting the dynamical equations into local form, the fixed points of the models are derived, as well as corresponding de Sitter and power-law solutions. Necessary and sufficient conditions on the model parameters for the existence of de Sitter solutions are obtained. The possible existence of power-law solutions is investigated, and it is proven that models with de Sitter solutions have no power-law solutions. A model is found, which allows to describe the matter-dominated phase of the Universe evolution.


Sign in / Sign up

Export Citation Format

Share Document